

Documentation Set for Swarm 2.2

Swarm Development Group

Copyright © 1996-2000 Swarm Development Group
Published 17 December 2004
Release 2.1.1

Licence terms for Swarm documentation

Reproduction of this documentation requires prior copyright release in writing, from the copyright holder (the Swarm Development Group);
except for reasonable personal use or educational purposes. Reproduction for mass distribution or profit, is not permitted. The SGML source and
associated utilites needed to generate this documentation can be found in the package: swarmdocs-2.1.1.tar.gz
(ftp://ftp.swarm.org/pub/swarm/swarmdocs-2.1.1.tar.gz) . Permission to use, copy, modify and distribute both the swarmdocs package and the
documentation it generates (that is the HTML, TeX, dvi, PostScript and RTF output), must be in accordance with the GNU Public Licence
(http://www.gnu.org/copyleft/gpl.html) (GPL).

Licence terms for Swarm software

The copyright holders make no representation about the suitability of Swarm for any purpose. It is provided “as is” without expressed or implied
warranty. Please refer to the GNU Library Public Licence (http://www.gnu.org/copyleft/lgpl.html) (LGPL). Permission to use, copy, modify and
distribute Swarm must be in accordance with the LGPL.

The Swarm home page (http://www.swarm.org) provides a good introduction to Swarm (what it does and what it
aims to be). On the other hand, the The Overview to Swarm aims to give you a more detailed overview of the sorts
of things a user needs to do in order to get a simulation up and running in Swarm. The combination of these two
documents should help you decide whether Swarm would be a useful tool in the context of your research.

Please direct all questions, bug reports, or suggestions for changes to the Swarm developers (see the Swarm home
page (http://www.swarm.org) for current contact details).

Revision History
2000-03-28 mgd

 Swarmdocs 2.1.1 frozen.

2000-03-01 alex

 Swarmdocs 2.1 frozen.

2000-03-01 Makefile.am alex

 (noinst_DATA): Remove entirely.

2000-02-15 setmeta.sgml alex

 Remove swarm@santafe.edu e-mail address, instead refer reader to SDG homepage.

1999-04-06 set.sgml alex

 Change PUBLIC identifier for DTD to "-//OASIS//DTD DocBook V3.1//EN". Remove JPEG notation class: now
part of the 3.1 DTD.

1999-01-13 setmeta.sgml alex

 Remove old LEGALNOTICE text. Refer to the newly-defined {doc,swarm}-legalnotice entities from global.ent.

1999-01-11 setmeta.sgml alex

 Make email ULINK an EMAIL tag. Tidy text.

1999-01-04 setmeta.sgml alex

 Remove <TITLE> element in ABSTRACT.

1998-10-14 set.tex.in mgd

 Use top_dossrcdir instead of top_srcdir.

1998-10-09 set.tex.in mgd

 Include tex/macros.tex.

1998-06-17 set.sgml mgd

 Use refbook.ent instead of src.ent.

1998-06-15 Makefile.am mgd

 Include $(top_srcdir)/Makefile.common.

1998-06-11 setmeta.sgml alex

 Removed BIBLIOSET element - moved TITLE, CORPAUTHOR, bibliodata up to under the SETINFO element.

1998-06-11 Makefile.am alex

 (GENERATED_SGML): Added for revhistory. (noinst_DATA): Added. (SGML, SGML_FILES): Separated out
generated/non-gen files.

1998-06-11 setmeta.sgml alex

 Replaced REVHISTORY with setrevhistory entity.

1998-06-11 set.sgml alex

 Added reference to setrevhistory.sgml. Changed local notion class to JPEG.

1998-06-11 set.sgml alex

 (entity): Included versions.ent, figs.ent and updated all entity references to be consistent with filenames.

1998-06-09 setmeta.sgml alex

 Used global SFI entity 'corpauthor' in CORPAUTHOR SGML tag.

1998-06-08 set.sgml mgd

 Use public identifiers (file renamed from set.sgml.in).

1998-05-23 set.sgml.in mgd

 Make ID of set be "set".

1998-05-23 set.sgml.in, set.tex.in mgd

 New files.

1998-05-23 Makefile.am mgd

 New file.

1998-05-23 Makefile mgd

 Remove.

1998-05-22 mgd

 Begin revision log.

v

Table of Contents
Book I Brief Overview of Swarm.. 6

1. Mag 1x: Experimental Procedure in a Computer ... 1
2. Mag 2x: Basis of Swarm Computation... 3
3. Mag 3x: Swarm Structures ... 4
4. Mag 4x:Sketch of Code .. 6
5. Conclusion.. 12

Book II Getting Started with Swarm ... 13
Installing Swarm... 1
Overview of the Swarm Distribution.. 4

Book III Reference Guide for Swarm 2.2 .. 5
Preface... xvi
Swarm Changes and Compatibility .. xvii
I. Defobj Library... 26
II. Collections Library .. 83
III. Activity Library.. 133
IV. Objectbase Library ... 183
V. Random Library... 215
VI. Simtools Library... 272
VII. Simtoolsgui Library .. 291
VIII. Gui Library .. 313
IX. Analysis Library... 360
X. Space Library... 381
XI. Startup protocol.. 399
A. GridTurtle Test Programs.. 404
B. Library Interface Conventions ... 406
C. Licenses for Distribution of Swarm and Applications ... 411
Protocol Index .. 412
Method Index ... 415
Function Index.. 447
Global Index... 448
Macro Index ... 449
Typedef Index... 450

Brief Overview of Swarm

Swarm Development Group

A Top-Down Introduction To Implementing an Experiment Using Swarm

This document attempts to explain the logical structure of a Swarm experiment application. Starting with a very
general outline of an idealized experimental procedure, we successively increase the level of specification of each
stage of this idealized structure until we arrive at details of an actual running Swarm application.

Along the way, we introduce and describe (very briefly) some of the tools currently available in Swarm to help users
build experiments. The tools presented here are only suggestive: the Swarm library documentation and example
applications will give a more detailed view of using specific components of Swarm

Revision History
2000-03-28 mgd

 Swarmdocs 2.1.1 frozen.

2000-03-01 alex

 Swarmdocs 2.1 frozen.

2000-03-01 Makefile.am alex

 (noinst_DATA): Remove entirely.

1999-04-06 overbook.sgml alex

 Change PUBLIC identifier for DTD to "-//OASIS//DTD DocBook V3.1//EN". Remove JPEG notation class: now
part of the 3.1 DTD.

1999-02-17 over04.sgml alex

 (PROGRAMLISTING: main): Change comment that says batchmode is indicated by swarmGUIMode being 1;
batchmode is indicated by swarmGUIMode being 0.

1999-01-26 overmeta.sgml alex

 Move bibliodata entity outside of BOOKBIBLIO - so legalnotice links work.

1999-01-13 overmeta.sgml alex

 Include the newly-defined {doc,swarm}-legalnotice entities from global.ent. Move CORPAUTHOR inside
BOOKBIBLIO.

1998-12-27 over01.sgml, over02.sgml, over03.sgml, over04.sgml, over05.sgml alex

Standardize use of IDs according to conventions. Add IDs for all SECT1 elements.

1998-10-14 overbook.tex.in mgd

 Use top_dossrcdir instead of top_srcdir.

1998-10-09 over04.sgml mgd

 Remove duplicated "Scheduling a Model Swarm" section.

1998-10-09 overbook.tex.in mgd

 Include tex/macros.tex.

1998-06-17 overmeta.sgml mgd

 Use overbookrevhistory.sgml instead of overrevhistory.sgml. Scale graphic to 100%.

1998-06-17 Makefile.am mgd

 (GENERATED_SGML): Use $(NAME)revhistory.sgml instead of overrevhistory.sgml. (EXTRA_DIST): over.ent
renamed to overbook.ent.

1998-06-15 overbook.sgml mgd

 Add JPEG notation.

1998-06-15 Makefile.am mgd

 Include $(top_srcdir)/Makefile.common.

1998-06-12 overbook.sgml mgd

 Include versions entity.

1998-06-12 overmeta.sgml mgd

 Scale graphic to 75%.

1998-06-11 over.ent alex

 Made all SYSTEM identifiers PUBLIC (listed in catalog now).

1998-06-11 Makefile.am alex

 (GENERATED_SGML): Added for revhistory. (noinst_DATA): Added. (SGML, SGML_FILES): Separated out
generated/non-gen files.

1998-06-11 over.ent alex

 Created overrevhistory.sgml entity.

1998-06-11 overmeta.sgml alex

 Replaced hardcoded revhistory with the new entity overrevhistory.sgml.

1998-06-09 overmeta.sgml alex

 Changed corpauthor to be inserted from Global public identifiers.

1998-06-08 overbook.sgml mgd

 Use public identifiers.

1998-06-04 over02.sgml, over03.sgml, over04.sgml alex

 Fixed inappropriately positioned PARA tags.

1998-05-23 Makefile.am mgd

 New file.

1998-05-23 Makefile mgd

 Remove.

1998-05-23 overbook.tex.in mgd

 New file.

1998-05-23 overbook.sgml mgd

 Set ID of book to "overbook".

1998-05-22 mgd

 Begin revision log.

xi

Table of Contents
1. Mag 1x: Experimental Procedure in a Computer... 1
2. Mag 2x: Basis of Swarm Computation... 3
3. Mag 3x: Swarm Structures ... 4
4. Mag 4x:Sketch of Code.. 6
5. Conclusion .. 12

1

Chapter 1. Mag 1x: Experimental Procedure in a
Computer

At the highest level of abstraction (= the lowest level of magnification), most experiments look like this:

1. Set up the physical system to be studied.
2. Set up and calibrate the instrumentation
3. Run the experimental system and record the outputs of the instrumentation.
4. Analyze results.
5.

• Change experimental and instrumental setup
• Go to 3.

6. Publish paper -> tenure -> fame -> etc.....

The important part of step 6) is that the published paper includes enough detail about the experimental
setup and how it was run so that other labs with access to the same equipment can recreate the
experiment and test the repeatability of the results. This is hardly ever done (or even possible) in the
context of experiments run in computers, and the crucial process of independent verification via
replication of results is almost unheard of in computer simulation. One goal of Swarm is to bring
simulation writing up to a higher level of expression, writing applications with reference to a standard
set of simulation tools.

First, let's look at what happens when we port the above stages into the world of a computer. In a
computer, you don't just drag the pieces of your experiment in from the outside world and hook them up.
You have to create a world with space and time, a bunch of objects in that world (stuff to study and stuff
to look at it with), schedules of events over those objects, all sorts of computer widgetry to interact with
that artificial world and to manage multiple experimental runs and the data that they generate, and so
forth. In other words, in a computer, one usually has to first *create* from scratch all of the bits and
pieces of the experimental setup - the virtual equivalent of beakers, bunsen burners, microscopes etc.

Perhaps the most important difference between an experiment in the "real" world and an experiment
inside of a computer is the nature of time. In the real world, everything in one's experimental setup is
moved forward in time via a very concurrency courtesy of the laws of physics. In a computer
experiment, however, the experimenter has to explicitly move every object in his/her artificial universe
forward in time, making sure that everything remains within some well-understood state of
synchronization. Many fundamental problems in computer science have arisen in the course of trying to
understand how to control and use concurrency. Furthermore, most people who implement computer
simulations aren't even aware of the subtle, but quite-possibly dominating, impacts of assumptions that
they aren't even aware that they are making about concurrency in their model when they code it up and
run it.

Therefore, a very important aspect of setting up an experiment in a computer is how one weaves the
multiple threads of time that must be woven together coherently in order to produce reliable, repeatable
results. Much of our work on Swarm has been devoted to not only making the task of managing
concurrency manageable, but towards mechanisms to make people aware that they are always making
implicit assumptions about how multiple threads of time are interacting with one another in their

Chapter 1. Mag 1x: Experimental Procedure in a Computer

2

experimental setups. Swarm forces experimenters to make their concurrency assumptions explicit, so
that others can reproduce their results by implementing the same assumptions about the flow of time.

3

Chapter 2. Mag 2x: Basis of Swarm
Computation

Here is a first approximation to embedding the above outline of an experimental procedure in Swarm
code:Swarm is implemented in the Object-Oriented Programming language Objective-C. Computation
in a Swarm application takes place by having objects send messages to each other. The basic message
syntax is:

[targetObject message Arg1: var1 Arg2: var2]

 Where "targetObject" is the recipient of the message, "messageArg1:Arg2:" is the message to send to
that object, and "var1", "var2", etc, are arguments to pass along with the message. Objective C's
messages are keyword/value oriented, which is why the message name "messageArg1:Arg2:" is
interspersed with the arguments.

The whole idea of Swarm is to provide an execution context within which a large number of objects can
"live their lives" and interact with one another in a distributed, concurrent manner. Furthermore, we
wish to insulate the user from having to master all of the highly baroque computer-science wizardry
usually required to implement such massively distributed systems of autonomous agents reliably and
robustly.

In the context of the Swarm simulation system, the generic outline of an experimental procedure takes
the following form:

1. Create an artificial universe replete with space, time, and objects that can be located, within reason,
to certain "points" in the overall structure of space and time within the universe., and allow these
objects to determine their own behavior according to their own rules and internal state in concert
with sampling the state of the world, usually only sparsely.

2. Create a number of objects which will serve to observe, record, and analyze data produced by the
behavior of the objects in the artificial universe implemented in step 1).

3. Run the universe, moving both the simulation and observation objects forward in time under some
explicit model of concurrency.

4. Interact with the experiment via the data produced by the instrumentation objects to perform a
series of controlled experimental runs of the system.

5. Depending on what is observed in stage 4), alter the experimental or instrumental "apparatus" and
go back to 3).

6. Publish paper *including* detailed specification of the experimental set-up so that others can
recreate your experiment and verify your results.

4

Chapter 3. Mag 3x: Swarm Structures
Swarm applications are structured around the concept of the Swarm. Swarms are the basic building
blocks of Swarm simulations: a Swarm is a combination of a collection of objects and a schedule of
activity over those objects. The collection are like the matter of the Swarm and the schedule is like the
arrow of time moving the objects forward.

3.1. Model Swarms
In our current demos, Swarm applications contain two swarms. At the core is the model swarm, the
Swarm that encapsulates the simulated model. Everything in the model swarm corresponds to objects in
the world being modeled. For instance, in Heatbugs the HeatbugModelSwarm contains a collection of
Heatbug agents, a HeatSpace to represent a physical property of the world, antion of Heatbug agents, a
HeatSpace to represent a physical property of the world, and a Grid2d to store agent position.

In addition to the object collection, the model swarm also contains a schedule of activity on the model.
The schedule defines the effect of passing time on the model. For the simple heatbugs schedule, the
execution is simply to update the HeatSpace (diffusing heat across the world) and then telling each
Heatbug agent to move itself.

Model swarms consist of a set of inputs and outputs. The inputs to the HeatbugModelSwarm are model
parameters: things like the size of the world, the number of HeatBugs, and the diffusion rate of heat. The
outputs of the HeatbugModelSwarm are the observables of the model: the individual Heatbugs, the
distribution of heat across the world, etc.

3.2. Observer Swarms
The model swarm alone defines the simulated world. But an experiment does not just consist of the
objects being experimented upon, it also includes the experimental apparatus used for observation and
measurements. In Swarm computer simulations, those observation objects are placed in an observer
swarm.

The most important object in an observer swarm is the model swarm that is being studied. The model
swarm is one component of the observer, kind of like a little world in a petri dish on the lab bench.
Other observer objects can then input data into the model swarm (setting simulation parameters, for
instance) and read data out of the model swarm (collecting statistics of the behavior of agents).

Just as in setting up a model swarm, an observer swarm has a collection of objects (the instrumentation),
a schedule of activity, and a set of inputs and outputs. The activity of the observer schedule is to drive
data collection - read this number out of the model, draw it on a graph. The inputs to the observer swarm
are configurations of the observer tools: what sorts of graphs to generate, for instance. The outputs are
the observations.

When running in graphics mode, the observer swarm objects are largely used to mediate user interface.
For instance, in Heatbugs the HeatbugObserverSwarm creates Raster widgets, EZGraphs, and Probes.
All of these objects are connected into the HeatbugModel swarm to read data, and to graphical interface
objects so the human sitting in front of the computer can observe the world.

Chapter 3. Mag 3x: Swarm Structures

5

Interactive, graphical experimentation with models is useful for coming up with intuitions. But for
serious experimentation it is necessary to collect statistics, which means doing many runs and storing
data for analysis. As an alternative to a graphical observer swarm, you can also create batch swarms,
observer swarms that are intended to be run without any interaction at all. Instead of putting up fancy
graphics, batch swarms read data from files to control the model and write the data out to other files for
analysis. The key here is that the model swarm used in the batch swarm is the exact same model as that
used in a graphical observer swarm: the only difference is what tools the observer (batch or graphical)
connects to the model.

3.3. Summary
Multiple Swarms are used to create an experimental apparatus and control it. The use of multiple
Swarms is not restricted only to this use, though: in particular, a model Swarm could itself contain its
own subswarms, building a hierarchical simulation. In future Swarm development, we intend to use the
power of the multiple Swarm modeling approach to build complicated and flexible models.

6

Chapter 4. Mag 4x:Sketch of Code
Now that we have multiple Swarms and an experimental apparatus, it's time to learn how to use the
objects themselves inside an application. Some examples are provided here: to understand this better, it
will be necessary to read through example applications and the library documentation. These examples
come from the Heatbugs application.

4.1. Building a Model Swarm
The key component of a simulation is the model Swarm. Here is the definition of a
HeatbugModelSwarm, from HeatbugModelSwarm.h

@interface HeatbugModelSwarm : Swarm {
int numBugs; // simulation parameters
double evaporationRate;
double diffuseConstant;
int worldXSize, worldYSize;
int minIdealTemp, maxIdealTemp;
int minOutputHeat, maxOutputHeat;
double randomMoveProbability;

id modelActions; // scheduling data structures
id modelSchedule;

id heatbugList; // list of all the heatbugs
Grid2d * world; // objects representing
HeatSpace * heat; // the world

}

-getHeatbugList; // access methods into the
-(Grid2d *) getWorld; // model swarm. These methods
-(HeatSpace *) getHeat; // allow the model swarm to be observed.

+createBegin: aZone; // extra methods you
-createEnd; // provide for Swarms
-buildObjects;
-buildActions;
-activateIn: swarmContext;

The first section of code says that a HeatbugModelSwarm is a kind of Swarm. HeatbugModelSwarm
inherits a lot of behavior from generic Swarm, but also adds new variables and methods.

The new variables are enclosed in the braces in the definition of HeatbugModelSwarm. They are split
into three general classes of things: simulation parameters, schedule data structures, and objects in the
world. This is a typical sort of model swarm.

Chapter 4. Mag 4x:Sketch of Code

7

Finally, a HeatbugModelSwarm defines new methods. The first few methods are used to allow the
model to be observed: a HeatbugModelSwarm will give out its list of Heatbugs, for instance, or its
HeatSpace. Observers use these methods to monitor the model.

In addition to the observation methods, there are several Swarm-specific methods for the building of
Swarms. These are fairly stereotyped. The createBegin and createEnd messages are used to create
the Swarm object itself. buildObjects builds the model objects, and buildActions builds the model
schedule - more on these later. Finally, activateIn arranges for the execution machinery to execute
the Swarm itself.

4.2. Defining an Agent
The agents are typically the real focus of a modeling effort. Most of the work in a simulation comes in
defining the agent behavior so that the computer agents resemble the real world phenomena you are
trying to create.

In the case of Heatbugs, agents are pretty simple. Here is their definition, from Heatbug.h:

@interface Heatbug: SwarmObject {
double unhappiness; // my current unhappiness
int x, y; // my spatial coordinates
HeatValue idealTemperature; // my ideal temperature
HeatValue outputHeat; // how much heat I put out
float randomMoveProbability; // chance of moving randomly

Grid2d * world; // the world I live in
int worldXSize, worldYSize; // how big that world is
HeatSpace * heat; // the heat for the world
Color bugColor; // my colour (display)

}

-setWorld: (Grid2d *) w Heat: (HeatSpace *) h; // which world are we in?
-createEnd;

-(double) getUnhappiness;

-setIdealTemperature: (HeatValue) i;
-setOutputHeat: (HeatValue) o;
-setRandomMoveProbability: (float) p;
-setX: (int) x Y: (int) y; // bug's position
-setBugColor: (Color) c; // bug's colour (display)

-step;

-drawSelfOn: (id <Raster>) r;

Heatbug is a subclass of SwarmObject. SwarmObjects have very little behavior of their own - they are
defined as the root class of most objects and control computer science aspects like memory allocation
and probability.

Chapter 4. Mag 4x:Sketch of Code

8

Heatbug carry with them a variety of state variables. For instance, each Heatbug has a notion of its ideal
temperature, which will affect it's behavior. In addition, Heatbugs have variables that let them know
about the world: these agents are storing references to the HeatSpace object, for example.

Most of the Heatbug methods have to do with setting up the agents state - the inputs to a Heatbug. Every
heatbug must set up its world and heat objects, via the setWorld:Heat: method. In addition when
Heatbugs are created they have their ideal temperature set, their output heat, etc. Heatbugs are also
observable. Heatbugs define a getUnhappiness method - the unhappiness is the major measurable
aspect of a heatbug, how well optimized it is at the moment. They also have a drawSelfOn method that
directs the heatbug to draw itself on the specified graphics widget.

Finally, and most importantly, a Heatbug has a step method. step is where the Heatbugs behavior is
defined: every time the Heatbug is told to step it performs its internal calculations, choosing where to
move. Each heatbug is told to step when appropriate by the model schedule. The code for step is the
real intellectual input into the model, and is worth reading as an example of an agent's behavior.

4.3. Building Agents
Now that Heatbugs have been defined, the model swarm needs to create them. This code fragment is
from the buildObjects method on HeatbugModelSwarm.

// A loop to create a bunch of heatbugs.
for (i = 0; i < numBugs; i++)
{
Heatbug * hbug;
int idealTemp, outputHeat;

// Choose a random ideal temperature, output heat from the specified
// range (model parameters).
idealTemp = [uniformRandom rMin: minIdealTemp Max: maxIdealTemp];
outputHeat = [uniformRandom rMin: minOutputHeat Max: maxOutputHeat];

// Create the heatbug, set the creation time variables
hbug = [Heatbug createBegin: [self getZone]];
[hbug setWorld: world Heat: heat];
hbug = [hbug createEnd];

// Add the bug to the end of the list.
[heatbugList addLast: hbug];

// Now initialize the rest of the heatbug's state.
[hbug setIdealTemperature: idealTemp];
[hbug setOutputHeat: outputHeat];
[hbug setX: [uniformRandom rMax: worldXSize] // random position

Y: [uniformRandom rMax: worldYSize]];
}

The details of this code are best explained in reading the documentation for the libraries and the
heatbugs demo application itself. Essentially, we first generate two random numbers: an ideal
temperature and an output heat for the new Heatbug. We then create the Hheatbug itself with

Chapter 4. Mag 4x:Sketch of Code

9

createBegin and fill in the required parameters of world and heat. Once those are set, we can send
createEnd to the Heatbug and it is finished being created. After it's done being created we add it into a
list of Heatbugs in the model and set a few parameters on it like the ideal temperature and the initial
position.

4.4. Building Space objects
In Swarm, spaces are really just another kind of agent. In the heatbugs model we create a HeatSpace, a
subclass of a diffusion object from the Swarm space libaries (specified in HeatSpace.m). Here is the
code from buildObjects in the HeatbugModelSwarm.

heat = [HeatSpace createBegin: [self getZone]];
[heat setSizeX: worldXSize Y: worldYSize];
[heat setDiffusionConstant: diffuseConstant];
[heat setEvaporationRate: evaporationRate];
heat = [heat createEnd];

the object is created, a few parameters are set, and then the creation is finalized.

4.5. Scheduling a Model Swarm
Once all of the simulated objects are created in buildObjects, the next task is to schedule them in the
method buildActions.

modelActions = [ActionGroup create: [self getZone]];
[modelActions createActionTo: heat message: M(stepRule)];
[modelActions createActionForEach: heatbugList message: M(step)];
[modelActions createActionTo: heat message: M(updateLattice)];

modelSchedule = [Schedule createBegin: [self getZone]];
[modelSchedule setRepeatInterval: 1];
modelSchedule = [modelSchedule createEnd];
[modelSchedule at: 0 createAction: modelActions];

The heatbug model schedule actually consists of two components: an ActionGroup called
modelActions and a Schedule called modelSchedule. The ActionGroup is a tightly coupled list of
three messages: every time the action group is executed, it will send three messages in a row:

[heat stepRule];
[heatbugList forEach: step];
[heat updateLattice];

 The ActionGroup alone specifies three messages to send - in order to put it in the simulation, that
ActionGroup is then dropped into a Schedule. The Schedule itself only has one action - to execute
modelActions itself. That action takes place at time 0. But because we've set a repeat interval on the

Chapter 4. Mag 4x:Sketch of Code

10

schedule of 1, the schedule itself loops, executing every 1 time step. The final result is that
modelActions is executed at time 0, time 1, etc.

4.6. Building a Graphical Observer Swarm
With the model swarm defined, arranging for a graphical observer Swarm is the next step. For Heatbugs,
the code is in HeatbugObserverSwarm. The structure of an observer swarm is almost exactly like
building a model swarm.

@interface HeatbugObserverSwarm : GUISwarm {
int displayFrequency; // one parameter: update freq

id displayActions; // schedule data structs
id displaySchedule;

HeatbugModelSwarm * heatbugModelSwarm; // the Swarm we're observing

// Lots of display objects. First, widgets
XColormap * colormap; // allocate colours
ZoomRaster * worldRaster; // 2d display widget
EZGraph * unhappyGraph; // graphing widget

// Now, higher order display and data objects
Value2dDisplay * heatDisplay; // display the heat
Object2dDisplay * heatbugDisplay; // display the heatbugs

}

Again we have input parameters (display frequency), schedule data structures, and resident objects
(model swarm, display widgets). The important exception is that HeatbugObserverSwarm is a subclass
not just of the generic Swarm class, but specifically a GUISwarm. That implies that the
HeatbugObserverSwarm will contain a control panel to allow the user to stop execution, and will also
have a special go method to set everything running.

4.7. Building a Data Graph
An example of an object inside the HeatbugObserverSwarm is a data graph, the graph of average
unhappiness. Here is the code necessary to create that object:

// Create the graph widget to display unhappiness.
unhappyGraph = [EZGraph createBegin: [self getZone]];
[unhappyGraph setTitle: "Unhappiness of bugs vs. time"];
[unhappyGraph setAxisLabelsX: "time" Y: "unhappiness"];
unhappyGraph = [unhappyGraph createEnd] ;

[unhappyGraph createAverageSequence: "unhappiness"
withFeedFrom: [heatbugModelSwarm getHeatbugList]
andSelector: M(getUnhappiness)] ;

Chapter 4. Mag 4x:Sketch of Code

11

The first step is to build an instance of an EZGraph and set its captions. Then a Sequence is created
inside that graph (in this case, an AverageSequence). In general, the Sequence requires a target object
and a message with which to extract data from that object -- the data is then plotted as one line in the
graph.

In the case of an AverageSequence, an entire collection of objects is presented to it. The
AverageSequence then extracts data from all the objects in the collection (in this case a List) using the
provided message (in this case getUnhappiness), and generate a datapoint from these values by
averaging them.

4.8. The main() function
The last main type of code needed for an application is the function main() the first function called in
your program. All the real work has been done already - all that's left is to create the objects at the right
time.

int main(int argc, const char** argv)

{
id theTopLevelSwarm ;

// Swarm initialization: all Swarm apps must call this first.
initSwarm(argc, argv);

// swarmGUIMode is set in initSwarm(). It's set to be 0 if you
// typed `heatbugs --batchmode' or `heatbugs -b', Otherwise, it's set to
// 1.

if (swarmGUIMode == 1)
// We've got graphics, so make a full ObserverSwarm to get GUI objects
theTopLevelSwarm = [HeatbugObserverSwarm create: globalZone];

else
// No graphics - make a batchmode swarm and run it.

theTopLevelSwarm = [HeatbugBatchSwarm create: globalZone];

[theTopLevelSwarm buildObjects];
[theTopLevelSwarm buildActions];
[theTopLevelSwarm activateIn: nil];
[theTopLevelSwarm go];

// theTopLevelSwarm has finished processing, so it's time to quit.
return 0;

}

main() calls initSwarm (required in all Swarm applications). It then detects if it should do graphics or
not, creates the appropriate top level Swarm to contain the model, and sets it to running. Simple as that!

12

Chapter 5. Conclusion
Swarm tries to help computer simulation authors by making it easier to write simulations by making it
more formal. The text above gives a narrative introduction into using Swarm for your own models, but a
real understanding of Swarm will only come when you start to read through our examples and try to
write your own applications. Good luck, and may your simulations be successful!

Getting Started with Swarm

Swarm Development Group

Overview

Learning to program with Swarm will require reading example applications, studying the technical reference
material and sometimes even getting down to the level of reviewing the header files in libraries. It does currently
require a good hands-on knowledge of object-oriented programming and software development processes in general.

Swarm is not yet a `shrink-wrapped' simulation toolkit. There are many of those kind of products on the market.
However, with these packages, the ease of use comes at a price - you are locked into the that vendor's particular
modelling paradigm. Swarm was intended to embrace many different types of modelling - consequently, it can be
more difficult for a novice user - but more powerful in the long-run.

Revision History
2000-03-28 mgd

 Swarmdocs 2.1.1 frozen.

2000-03-01 alex

 Swarmdocs 2.1 frozen.

2000-03-01 Makefile.am alex

 (noinst_DATA): Remove entirely.

2000-02-29 install01.sgml mgd

 Updates for 2.1.

1999-09-25 install01.sgml mgd

 Update versions for fcall, BLT. Add note about Emacs.

1999-04-20 install01.sgml mgd

 Update versions for ffcall, Tcl/Tk, BLT, and libpng.

1999-04-06 installbook.sgml alex

 Change PUBLIC identifier for DTD to "-//OASIS//DTD DocBook V3.1//EN". Remove JPEG notation class: now
part of the 3.1 DTD.

1999-01-27 installmeta.sgml alex

 (booktitlelogo): Scale GRAPHIC by 98%, so all recto-mode elements fit on one page in print backend.

1999-01-26 installmeta.sgml alex

 Move bibliodata entity outside of BOOKBIBLIO - so legalnotice links work.

1999-01-13 installmeta.sgml alex

 Include the newly-defined {doc,swarm}-legalnotice entities from global.ent. Move CORPAUTHOR inside
BOOKBIBLIO.

1998-11-01 install01.sgml alex

 Changed URL to Paul Johnson's Swarm FAQ to new location.

1998-10-14 installbook.tex.in mgd

 Use top_dossrcdir instead of top_srcdir.

1998-10-09 installbook.tex.in mgd

 Include tex/macros.tex.

1998-10-06 installmeta.sgml mgd

 Make more conservative. Remove statements of intent.

1998-10-06 install01.sgml mgd

 Update library version facts, compatibility, etc. Add URLs for both versions and general package information.

1998-07-17 install02.sgml alex

 Fixed ID of ARTICLE to `INSTALLBOOK' rather than `INSTALL'.

1998-07-17 install01.sgml alex

 (SIMPLESECT): Updated ULINK http and ftp locations for download of Tcl/Tk to `scriptics.com'. `smli.com' is
now out-of-date. Also changed link to BLT to ftp location, rather than the webpage. (ARTICLE): Added missing ID.

1998-06-25 install01.sgml alex

 Updated installation instruction to reflect new `configure' process.

1998-06-17 Makefile.am mgd

 (GENERATED_SGML): Use $(NAME)revhistory.sgml instead of installrevhistory.sgml. (EXTRA_DIST): Use
installbook.ent instead of install.ent.

1998-06-17 installmeta.sgml mgd

 Use installbookrevhistory.sgml instead of installrevhistory.sgml. Scale graphic to 100%.

1998-06-16 install01.sgml alex

 Updated `Supported Systems' to make mention of Windows NT. Updated `Prerequisite Libraries' to mention
libraries required as of Swarm 1.1/1.2.

1998-06-15 Makefile.am mgd

 Include $(top_srcdir)/Makefile.common. (EXTRA_DIST): New variable.

1998-06-15 install.ent alex

 Removed install00.sgml from list of ENTITIES.

1998-06-15 installbook.sgml alex

 Added new JPEG notation class and notation.

1998-06-15 Makefile.am alex

 (SGML): Removed install00.sgml.

1998-06-15 installcont.sgml alex

 Removed include of install00.sgml.

1998-06-15 install02.sgml alex

 Removed links to 'reference book' elements - made all linkends be FORMALPARAs.

1998-06-15 install01.sgml alex

 Commented-out LINK to reference book 'debug' section. Moved original PREFACE material in install00.sgml into
new SIDEBAR.

1998-06-15 install00.sgml alex

 Removed.

1998-06-12 installbook.sgml mgd

 Include versions and figures entities.

1998-06-12 installmeta.sgml mgd

 Scale graphic to 75%.

1998-06-12 install00.sgml, install01.sgml, install02.sgml, installmeta.sgml mgd

 Update all IDs to SWARM.module.SGML.type.

1998-06-11 install.ent alex

 Made all SYSTEM identifiers PUBLIC (listed in catalog now).

1998-06-11 Makefile.am alex

 (GENERATED_SGML): Added for revhistory. (noinst_DATA): Added. (SGML, SGML_FILES): Separated out
generated/non-gen files.

1998-06-11 install.ent alex

 Created installrevhistory.sgml entity.

1998-06-11 installmeta.sgml alex

 Replaced hardcoded revhistory with the new entity installrevhistory.sgml.

1998-06-09 installmeta.sgml alex

 Changed corpauthor to be inserted from Global public identifiers.

1998-06-08 installbook.sgml mgd

 Use public identifiers.

1998-05-23 installbook.tex.in mgd

 New file.

1998-05-23 Makefile.am mgd

 New file.

1998-05-23 installbook.sgml mgd

 Make ID of book be "installbook".

1998-05-23 Makefile mgd

 Remove.

1998-05-22 mgd

 Begin revision log.

xviii

Table of Contents
Installing Swarm .. 1
Overview of the Swarm Distribution.. 4

1

Unless you are using a Windows or a Unix system with pre-built package manager support (Debian
GNU/Linux 2.2, Redhat 6.1, Solaris 2.7), installing Swarm will take some time: various external
libraries need to be acquired, compiled, and installed, and then Swarm itself needs to be compiled.
Please report any problems during installation back so that we can try to fix them in the future.

If you are using a Unix system with binary package manager support, please read the manual
appropriate to the manager. Respectively, these are `dpkg', `rpm', and `pkgadd'.

Swarm uses quite a few libraries and is intended to run under all major flavors of Unix. This presents
the unpleasant but largely unavoidable side-effect of making Swarm hard to install. Ideally, you should
get the sys-admin for your site to do the job. In any event, the new online Swarm FAQ where we've
tried to compile some of the common obstacles to installation, may be useful.

• Online FAQ (http://lark.cc.ukans.edu/~pauljohn/SwarmFaq/SwarmOnlineFaq.html) . Paul
Johnson's active Swarm FAQ. Share your wisdom!

1. Supported Systems
• Unix. Our intention is that Swarm will run on any modern Unix system. Ideally, Swarm itself should

be 100% portable. Swarm has been known to run on SunOS 4.1.3, Solaris 2.[567], GNU/Linux
systems for Intel, Sparc, and PPC, FreeBSD, HPUX 9, 10, and 11, IRIX 5.3 & 6.5, Digital Unix for
Alpha and MachTen/68k.

• Windows NT. Swarm can be used on Windows. Installation on Windows is a simple matter of
running the InstallShield package. Please see the release page (http://www.swarm.org/release-
swarm.html) , for more details.

See the Platform News (http://www.swarm.org/release-platforms.html) web page for the most up-to-date
information.

2. Prerequisite Programs
We assume you already have Unix and X Windows on your system: the rest of this software is freely
available. Expect to spend some time compiling and installing these packages. URLs on this page are to
the home distribution site: as a convenience, the Swarm ftp site contains copies of the necessary
packages in needed-software (ftp://ftp.swarm.org/pub/swarm/needed-software) .

• GNU gcc. gcc is the FSF's GNU Compiler Collection. You need gcc 2.95.2 or greater installed on
your system, including the Objective C support. The latest version is available from
ftp://ftp.gnu.org/pub/gnu/gcc (ftp://ftp.gnu.org/pub/gnu) .

• GNU make. Make is used to automate building programs: every OS ships their own version of make
with some random set of features. The Swarm makefiles currently use features that are not supported
by all makes: GNU make is the only one guaranteed to work. Linux systems probably use GNU make
already. The latest version of GNU make is available here (ftp://ftp.gnu.org/pub/gnu/make) .

• GNU gdb. gdb is the GNU debugger: Swarm doesn't require this, but you will probably want gdb on
your system to debug programs. gdb is available here (ftp://ftp.gnu.org/pub/gnu/gdb) .

Installing Swarm

2

• GNU Emacs. Emacs is a programmable text processing system and editor. Emacs is needed if you
want to build Swarm for Java from source code. Emacs is also a good program for editing Objective
C and Java code. Emacs is available here (ftp://ftp.gnu.org/pub/gnu/emacs/) .

3. Prerequisite Libraries
Swarm uses a variety of freely available software libraries. All of these libraries need to be configured
and installed independently of Swarm. When you configure Swarm itself, take a look at the output of
"configure --help" to see what "--with-*dir" options are available for locating the installations of these
libraries.

• XPM Library (http://www.inria.fr/koala/lehors/xpm.html) . The XPM library adds pixmap
(coloured bitmap) support to X11. XPM is a common X library, many systems already have it
installed. A reasonably modern version is needed: we've used version 3.4f. If you get complaints
about "Object" being multiply defined, your version of libXpm is too old. The library is available
from ftp://ftp.x.org/contrib/libraries/xpm-3.4k.tar.gz (ftp://ftp.x.org/contrib/libraries/xpm-3.4k.tar.gz)
.

• Tcl/Tk (http://www.scriptics.com) . Swarm works with Tcl/Tk versions 8.2.3
(ftp://ftp.scriptics.com/pub/tcl/tcl8_2/tcl8.2.3.tar.gz) /8.2.3
(ftp://ftp.scriptics.com/pub/tcl/tcl8_2/tk8.2.3.tar.gz) and later.

• BLT (http://www.tcltk.com/blt/index.html) . BLT is an add-on to Tk that provides more widgets.
BLT 2.4o (http://ftp.tcltk.com/pub/blt/BLT2.4o.tar.gz) is the current version.

• ffcall (http://clisp.cons.org/~haible/packages-ffcall.html) / libffi
(http://www.cygnus.com/~green/libffi.html) . Either ffcall or libffi can be used in Swarm to provide
the underlying support for message probing. ffcall is provided with Swarm and works for most
platforms. Both libraries provide a portable, high level programming interface to various platform
calling conventions. This allows a programmer to call any function specified by a call interface
description at run time. ffi stands for Foreign Function Interface. A foreign function interface is the
popular name for the interface that allows code written in one language to call code written in another
language.

The latest version of ffcall is 1.6 (ftp://ftp.swarm.org/pub/gnu/ffcall-1.6.tar.gz) The latest version of libffi is: 1.20
(ftp://ftp.cygnus.com:/pub/green/libffi-1.20.tar.gz)

• libpng (http://www.cdrom.com/pub/png) . Swarm requires support for pixmap images - `png'
provides that support.

The current version is 1.0.5 (ftp://swrinde.nde.swri.edu/pub/png/src/libpng-1.0.5.tar.gz) zlib
(http://www.cdrom.com/pub/infozip/zlib) . png requires data compression which zlib, a general data compression
library, provides. The current version is 1.1.3 (ftp://ftp.cdrom.com/pub/infozip/zlib/zlib.tar.gz) .

4. Configuring and Installing Swarm
Once you have all of the above software installed, the next step is to configure Swarm. First unpack the
Swarm .tar.gz file into a convenient place (via gzip -dc swarm-xx.yy.zz.tar.gz | tar xf -

).

As of the Swarm 1.2 release, the compilation and installation of Swarm is handled by a GNU configure
script. This removes a large burden from the user, as configure has some intelligence which
automatically sets many common options.

Installing Swarm

3

You first need to read the file INSTALL with the release of Swarm, in the top-level source directory, to
determine the appropriate and recent options to give to the configure script (this is analogous to what
you needed to do when editing the *INCDIR macros in the obsolete Makefile.conf in earlier
releases).

5. Compiling Swarm Libraries -- (not required for binary distributions)
You've done the hard part, now type make, as in earlier releases from the top of the source directory,
and watch the fun! If running make in the root Swarm directory does nothing, you probably aren't
running GNU Make.

There is now an explicit "installation" step to install Swarm -- make install so that binaries and libraries
can be installed cleanly to a specified location. On many Unix systems this likely to somewhere like
/usr/local/.

The Makefiles included by user-created libraries, and user-created applications are Makefile.lib, and
Makefile.appl, respectively. These distributed with earlier versions are now generated by configure .
If you run into problems, the right thing to do is to re-run configure, and re-install Swarm, tinkering
with these generated Makefiles directly is not recommended.

6. Compiling and Running Swarm Applications
Swarm applications are distributed separately: you will need to download and unpack applications
independently. After the application is unpacked, you will have to set the SWARMHOME environment
variable to where you installed Swarm. All you need to do now, to compile an application is type make.

Once the application is compiled, just run it out of its own directory. A control panel and a couple of
parameter windows should pop up; press the "Go" button to watch it run. Congratulations!

7. Post-compile cleanup
After you've tried out the Swarm libraries for awhile you may want to clean up the intermediate .o files,
and other generated files, in the original source directory. Once you have done the make install you can
remove the entire source directory, or if you might want to re-install later with different option, just type
make clean to clean-up all files generated by the original make. See your the file INSTALL in the
Swarm distribution, for more details.

Just remember to set $(SWARMHOME) to the right directory in your application's makefile. If you have
installed Swarm, but for some reason, need to recompile the library and want to start from a completely
clean source directory, you can run make uninstall and then make clean- see INSTALL file again here.

4

1. Libraries
The main part of Swarm is a set of libraries, one per source directory. Briefly, the directory organization
is as follows:

lib, include, bin. Installed libraries, include files, and helper binaries.

src. Swarm library source files.

• defobj. Support of Swarm style Objective C programming

• collections. Collection library -- various objects that "collect" other objects

• activity. Schedule execution mechanism -- the "process"

• objectbase. Base class for simulated objects -- the "agents"

• space. Spatial environment library (currenly mostly 2D spaces are supported).

• random. Random number library.

• simtools. Collected tools (non-GUI) useful for developing Swarm simulations

• simtoolsgui. Further tools useful for interactive "GUI-oriented" simulations

• gui. Graphical Interface library

• analysis. Objects that help with data processing

2. Sample applications
In addition, there is a set of sample Swarm applications that are distributed separately. Applications are
the best current roadmap for the Swarm code: much of what is possible with Swarm is demonstrated in
the sample applications. The most important applications are:

• template. Template simulation. The code itself here is trivial, but provides a nice base for new Swarm
programmers to start from.

• tutorial. A step-by-step tutorial to using Swarm. The tutorial starts with a simple implementation of a
cellular automaton in ordinary "C" and proceeds up to a full-blown GUI-oriented Swarm application
in Swarm Objective C.

• heatbugs. Heatbugs, our canonical, simple complex system. The code here is thoroughly commented
for use as a guide to swarm programming.

• mousetrap. Mousetrap is a discrete event simulation of a room full of mousetraps loaded with ping-
pong balls. The triggering of one of the traps sets off a chain reaction supposedly similar to fission. It
is also thoroughly commented.

• market. Market is an Objective-C wrapped piece of legacy code originally written in C. It is a useful
example of how to convert legacy code into Swarm; but, it is not very instructive on Swarm
programming in general.

Reference Guide for Swarm 2.2

Swarm Development Group

Overview

Swarm is a collection of libraries against which you link your simulation code. This document describes the
interface for those core libraries.

Important: The probe, random and technical appendices formerly part of the Reference Guide for Swarm have
been removed and relocated to the new Swarm User Guide (http://www.swarm.org) . In the interests of
conserving paper, the grid turtle example programs are available in tar.gz format from the Swarm ftp site (see
Appendix A) and pointers to the full text of the LGPL and GPL licenses (see Appendix C) are provided rather
than the full text itself.

Revision History
2000-03-28 mgd

 Swarmdocs 2.1.1 frozen.

2000-03-01 mgd

 Swarmdocs 2.1 frozen.

2000-03-01 Makefile.am, Makefile.rules mgd

 (nodist_noinst_DATA): Add. Needed in order to get the dependency for generated SGML. (gridexamples.sgml):
Remove. (GENERATED_SGML): Remove gridexamples.sgml. (EXAMPLES): Remove. (refindex.sgml
$(PAGES), graph): Quote SWARMSRCDIR and SWARMDOCS.

2000-03-01 grid-app.sgml mgd

 Add LINK to IMPORTANT for all files.

2000-03-01 ref00a.sgml mgd

 Remove obsolete reference to release changes.

2000-03-01 refcont.sgml alex

 Remove {lgpl,gpl}-app.sgml inclusion in content.

2000-03-01 refbook.ent alex

 Likewise for the relevant ENTITIES.

2000-03-01 lgpl-app.sgml, gpl-app.sgml alex

 Remove files.

2000-03-01 Makefile.am alex

 (SGML): Add license-app.sgml.

2000-03-01 refmeta.sgml alex

 Add admonition regarding reorganization and deletion of appendices in ABSTRACT.

2000-03-01 grid-app.sgml alex

 Remove the inline gridturtle code. Add admonition specifying location of tar.gz file for download.

2000-03-01 Makefile.am alex

 (noinst_DATA): Remove variable entirely, since we neither install nor distribute the GENERATED_SGML files.

2000-03-01 Makefile.rules alex

 (noinst_DATA): Likewise for generated revhistory.sgml files

2000-02-29 ref00a.sgml mgd

 Add 2.1 porting notes.

2000-02-15 ref00.sgml alex

 Update Acknowledgment section and remove swarm@santafe.edu mailto link.

2000-02-15 refcont.sgml alex

 Comment-out random-app.sgml, probes-app.sgml, techcont.sgml APPENDIXes. All material either outdated or
relocated to the Swarm User Guide.

1999-09-22 graph.el mgd

 Use TOP_BUILDDIR, rather than BUILDDIR to load protocol.

1999-06-22 sgml.el mgd

 (sgml-method-definitions): Use methodinfo- functions instead of list accessors.

1999-06-22 Makefile.am alex

 (sgml.elc): Depend on $(abs_top_builddir)/protocol.elc, rather than just protocol.elc. (refindex.sgml $(PAGES)):
Likewise. (graph): Likewise.

1999-06-22 sgml.el alex

 (load-path): Set to TOP_BUILDDIR, rather than BUILDDIR.

1999-06-21 sgml.el alex

 (sgml-refmeta): If deprecated protocol, print Deprecated in square braces after REFENTRYTITLE. (sgml-refsect1-
text-list): Print out the deprecated doc-string if set, as a PARA element with EMPHASIS before description text.
(sgml-refsect1-description): Pass object to `sgml-refsect1-text-list', so it can determine whether to print deprecated
doc-string.

1999-06-21 Makefile.am mgd

 (protocol.elc): Remove rule.

1999-06-02 ref00a.sgml alex

 Add porting notes for 1.4/1.4.1 -> 2.0 changes.

1999-04-23 Makefile.am mgd

 (EXTRA_DIST): Add graph.el. (MODULES): New variable: (SUBDIRS): Use it. (graph): New target.

1999-04-23 graph.el mgd

 Moved here from toplevel directory.

1999-04-06 refbook.sgml alex

 Update PUBLIC identifier for DTD to "-//OASIS//DTD DocBook V3.1//EN" Remove JPEG notation class - now
part of the 3.1 DTD.

1999-02-28 sgml.el alex

 (run-all): Set uniquify-method-lists to `nil' when calling load-and-process-modules. Ensures all method
documentation called correctly.

1999-02-24 Makefile.am mgd

 (protocol.elc): Dependency on $(swarm_srcdir)/etc/protocol.el. (sgml.elc): Dependency on common.elc and
protocol.elc. Both rely on implicit rules. (EXTRA_DIST): Add sgml.el.

1999-02-24 sgml.el mgd

(sgml-generate-indices): Use get-top-builddir instead of get-swarmdocs-build-area.

1999-02-16 Makefile.am mgd

 (refindex.sgml $(PAGES)): Depend on $(swarm_srcdir)/etc/{protocol,common}.el instead of
$(top_srcdir)/{protocol,common}.el. Load sgml.el instead of protocol.el.

1999-02-09 refcont.sgml alex

 (random-app.sgml): Add `Random' Appendix to list of contents.

1999-01-26 refmeta.sgml alex

 Move bibliodata entity outside of BOOKBIBLIO - so legalnotice links work.

1999-01-23 ref00a.sgml mgd

 Remove porting note about .swarmArchiver. Swarm 1.4 will read old files, but then change the syntax.

1999-01-15 ref00a.sgml alex

 Add porting note on Histogram protocol change.

1999-01-13 refmeta.sgml alex

 Remove old LEGALNOTICE text. Refer the newly-defined {doc,swarm}-legalnotice entities from global.ent.
Move CORPAUTHOR inside BOOKBIBLIO.

1999-01-13 gpl-app.sgml alex

 Refer to the Swarm documentation as being under the terms of the GPL.

1999-01-13 ref00a.sgml alex

 (SECT1): Add porting notes for Swarm 1.4.

1999-01-07 ref00a.sgml alex

 Make SIMPLELIST an ITEMIZEDLIST.

1999-01-07 gpl-app.sgml alex

 Remove SIDEBAR from wrapping the licence text, SIDEBAR can't run over a page in the printed backend. Make
introductory description a SIDEBAR.

1999-01-07 lgpl-app.sgml alex

 Likewise.

1999-01-07 ref00.sgml alex

 Replace SECT1 with two SIMPLESECTs. Tidying and reformatting. (Acknowledgements): Updated.

1998-12-22 probes-app.sgml alex

 ({customized,complete}-probe-map): Add IDs to FIGUREs

1998-10-14 refbook.tex.in mgd

 Use top_dossrcdir instead of top_srcdir.

1998-10-09 refbook.tex.in mgd

 Include tex/macros.tex.

1998-08-25 ref00a.sgml mgd

 Add 1.2 -> 1.3 porting notes.

1998-07-23 ref00a.sgml mgd

 Put items related to HeatbugObserverSwarm.h in their own list.

1998-07-18 ref00a.sgml mgd

 Clarify wording about not using statically typed Swarm objects.

1998-06-25 Makefile.am alex

 (refindex.sgml $(PAGES)): Set temporary environment variable SWARMSRCDIR before invocation of batch-
mode e-lisp program `protocol.el'.

1998-06-24 ref00a.sgml alex

 Tidied 1.1 => 1.2 porting notes.

1998-06-23 ref00a.sgml alex

 Added porting notes for Swarm 1.1 => 1.2. Expanded porting notes for Swarm 1.0.5 => 1.1. Added intro
SIDEBAR.

1998-06-17 refmeta.sgml mgd

 Use refbookrevhistory.sgml instead of srcrevhistory.sgml. Scale graphic to 100%.

1998-06-17 refbook.sgml mgd

 Use refbook.ent instead of src.ent.

1998-06-17 Makefile.am mgd

 Include refbook/Makefile.rules instead of src/Makefile.rules. (GENERATED_SGML): Rename srcrevhistory.sgml
to refbookrevhistory.sgml. (ENT, EXTRA_DIST): Use refbook.ent instead of src.ent.

1998-06-17 refbook.ent mgd

 Renamed from src.ent.

1998-06-16 probes-app.sgml alex

(complete-probe-map): Scale graphic to 50%. (customized-probe-map): Scale graphic to 75 %. In 'Support for
Probing' section - make ITEMIZEDLIST spacing=compact.

1998-06-15 Makefile.am mgd

 Include $(top_srcdir)/src/Makefile.rules. (SGML): Move ENT to SGML_FILES. (EXTRA_DIST): New variable.

1998-06-15 Makefile.rules mgd

 New file.

1998-06-12 refmeta.sgml mgd

 Scale graphic to 75%.

1998-06-12 Makefile.am mgd

 (gridexamples.sgml): Update IDs to SWARM.module.SGML.type.

1998-06-12 conventions-app.sgml, gpl-app.sgml, grid-app.sgml, lgpl-app.sgml, probes-app.sgml, ref00.sgml,
ref00a.sgml, refmeta.sgml mgd

 Likewise.

1998-06-11 refbook.sgml mgd

 Use jpeg instead of jpg for notation and local.notation.class.

1998-06-10 Makefile.am mgd

 Move CLEANFILES to Makefile.rules. (GENERATED_SGML): Move versions.ent to Makefile.rules. (ENT):
New variable, the list of .ent files for this module. (SGML): Add ENT.

1998-06-10 lgpl-app.sgml, gpl-app.sgml, ref00a.sgml alex

 Fixed the IDs to have the appropriate "SWARM.SRC." prefix in the content ID.

1998-06-10 ref00.sgml alex

 Made SIMPLESECTs into SECT2s. Fixed redundant "SWARM.SRC." in PREFACE id.

1998-06-09 refmeta.sgml alex

 Change CORPAUTHOR to 'corpauthor' - an SFI Hive global entity.

1998-06-09 refmeta.sgml mgd

 Change CORPAUTHOR to SDP. Overview needlessly wordy.

1998-06-08 refbook.sgml.in mgd

 Use public identifer for global.ent, and src.ent. Add versions.ent and figs.ent.

1998-06-08 Makefile.am mgd

 (GENERATED_SGML): Add versions.ent.

1998-06-07 src.ent.in mgd

 Define graphic entities per html/print.

1998-06-07 refbook.sgml.in mgd

 Add local.notation.class entity and notation for JPG.

1998-06-07 config.ent alex

 Removed.

1998-06-07 src.ent alex

 Removed reference to config.ent.

1998-06-06 src.ent.in mgd

 Don't use extracted locations, as module entities now all reference public identifiers.

1998-06-05 src.ent.in mgd

 Add srcrevhistory.sgml.

1998-06-05 refmeta.sgml mgd

 Replace REVHISTORY with srcrevhistory.sgml.

1998-06-05 Makefile.am mgd

 (SUBDIRS): Add tech. (swarm_ChangeLog): Add (empty). (GENERATED_SGML): Add srcrevhistory.sgml.

1998-06-03 Makefile.am alex

 (CLEANFILES): Changed hardcoded refbook.rtf to $(NAME).rtf. Added Local variable mode for emacs makefile-
mode.

1998-06-03 Makefile.am mgd

 (gridexamples.sgml): Remove unnecessary subshell for `for' loop and don't cd to $(srcdir) when done (it's in a
subshell).

1998-06-01 grid alex

 Moved the grid subdir to the root of the Swarm application source tree and renamed to gridturtle.

1998-06-01 Makefile.am alex

 (gridexamples.sgml): After changing directories into $(gridturtle_srcdir) - change directory back to $(srcdir) to
restore location.

1998-06-01 Makefile.am mgd

 (swarm_srcdir, gridturtle_srcdir): New variables which get substituted assignments from configure. Use them
instead of $(SWARMHOME) and $(srcdir)/grid.

1998-06-01 grid-app.sgml alex

 Fixed incorrect LINKENDS and descriptions for grid5.m and grid6.m.

1998-05-29 probes-app.sgml mgd

 Update LINKENDs per new ID conventions.

1998-05-26 Makefile.am mgd

 (refindex.sgml $(PAGES)): Add $(top_srcdir)/protocol.el and $(top_srcdir)/common.el as dependents.
(refindex.sgml $(PAGES)): Set SWARMDOCS environment variable to the fully-resolved top_srcdir.

1998-05-23 refbook.sgml.in mgd

 New file.

1998-05-23 refbook.tex.in mgd

 New file.

1998-05-23 refbook.sgml mgd

 Removed.

1998-05-23 Makefile.am mgd

 New file.

1998-05-23 Makefile mgd

 Remove.

1998-05-23 src.ent.in mgd

 New file.

1998-05-23 src.ent mgd

 Removed.

1998-05-22 mgd

 Begin revision log.

xiv

Table of Contents
Preface ... xvi
Swarm Changes and Compatibility.. xvii
I. Defobj Library.. 26
II. Collections Library ... 83
III. Activity Library... 133
IV. Objectbase Library.. 183
V. Random Library ... 215
VI. Simtools Library.. 272
VII. Simtoolsgui Library ... 291
VIII. Gui Library ... 313
IX. Analysis Library .. 360
X. Space Library .. 381
XI. Startup protocol... 399
A. GridTurtle Test Programs.. 404
B. Library Interface Conventions... 406
C. Licenses for Distribution of Swarm and Applications ... 411
Protocol Index .. 412
Method Index ... 415
Function Index ... 447
Global Index ... 448
Macro Index ... 449
Typedef Index... 450

xv

List of Examples
• defobj

• Arguments

• Example #1 ... 42

• Create

• Example #1 ... 47

• Customize

• -customizeCopy: ... 50
• Example #1 ... 50

• Serialization

• -lispStoreIntegerArray:Keyword:Rank:Dims:Stream: .. 71
• -lispSaveStream:Boolean:Value: .. 71

• collections

• Index

• -getLoc .. 110

• activity

• ActionCreatingTo

• Example #1 ... 150

• objectbase

• Swarm

• -activateIn: .. 210

• analysis

• EZSequence

• -setUnsignedArg: .. 377

• space

• Discrete2d

• Example #1 ... 391

xvi

Preface
1. The Swarm Hive
The Swarm home page (http://www.swarm.org) is the place to obtain both new software releases and
documentation for Swarm. We welcome comments about Swarm and it's documentation.

You can also mail comments to the Swarm Support mailing list. See the Swarm mailing lists page
(http://www.swarm.org/community-mailing-lists.html) for instructions on how to join this list.

2. Acknowledgments
The Swarm project was initiated by Chris Langton (now at the Swarm Corporation). Roger Burkhart
(John Deere, now at VantagePoint Network), Nelson Minar (now at the MIT Media Lab), Glen Ropella
(now at Swarm Corporation), Manor Askenazi (now at Coopers & Lybrand), Irene Lee (SDG), Vladimir
Jojic (UIUC), and Alex Lancaster (Santa Fe Institute) have all been active in the design and
programming of Swarm. Marcus Daniels is the current maintainer and lead developer at the SDG.

Much of the early development of Swarm was done by Nelson Minar, who is now at the MIT Media
Lab, and Manor Askenazi and Glen Ropella (Swarm Corporation), both formerly of the SFI. The
random library was written by Sven Thommesen and graciously contributed. Eric Carr and JJ Merelo
have been patient Swarm users and developers. Howard Gutowitz and David Hiebeler have participated
in the design process. (David is also the implementor of the original Swarm prototype.) And, many
thanks to Simon Fraser, Swarm graphic designer extraordinaire. Finally, many thanks go out to the
Swarm user community, particularly those who have stuck with us from the beginning.

xvii

Swarm Changes and Compatibility

Notes on Porting

New versions provide new features, but may have the unfortunate side-effect of breaking many existing
applications. This document is intended to provide a step-by-step guide to updating your Swarm
applications to use the latest version as quickly and painlessly as possible.

This document contains detailed examples for porting versions equal to, or later than, Swarm 1.0.5.

Users trying to port from versions earlier than 1.0.5, are advised to first view the compatibility section
of the 1.0.5 swarmdocs. First perform those changes in sequence, (i.e. if you have apps compatible with
Swarm 1.0.3 - first make the 1.0.3 => 1.0.4 changes, followed by the 1.0.4 => 1.0.5 changes) and then
perform the changes described here. You may notice that some of the changes overlap as earlier
versions may have merely deprecated some functionality, whilst later versions actually disabled it. This
has been done to phase new functionality in, and old functionality out over several releases, so the user
isn't hit with an enormous burden every minor release.

We intend that most application changes should be covered, but given that we can never know in
advance how a user has employed the software, we cannot guarantee that all potential application
changes will be covered in the document explicitly.

Key for changes:

• (*) = absolutely necessary changes (if not performed, will fail to compile)

• (x) = not-strictly necessary, but highly recommended changes (deprecated coding practice, or will
produce a compiler warning, if not performed)

1. Porting from 2.0 or 2.0.1 to 2.1
• Backward-compatibility Random module protocol names have been removed. (Generators have the

name suffix "gen" and distributions have the suffix "Dist".)

• The Archiver method getWithZone:object: was renamed to getWithZone:key:.

2. Porting from 1.4 or 1.4.1 to 2.0
• The method setNumBins:, found in the analysis library protocol EZBin (see page 369) and also in

the underlying Histogram (see page 336) protocol from the gui library, has changed its name to
setBinCount:. You will need to change all invocations of setNumBins: on objects that conform to
either of these protocols, to setBinCount:.

Swarm Changes and Compatibility

xviii

3. Porting from 1.3 or 1.3.1 to 1.4
• The Arguments protocol has moved from the objectbase library to the defobj library. If you

were subclassing from the Arguments class you will now need to subclass from Arguments_c and
import the defobj.h header file.

• The ListShuffler class has been moved from simtools to collections. You must now import
collections.h. Alternatively you can use the new [beginPermuted: aZone] index creation
method on a collection from the Collection (see page 103) protocol in place of the ListShuffler
protocol.

• The -setLabels:: and -setColors:: methods in the Histogram (see page 336) protocol now
each must be given a new count: (unsigned)labelCount and count:
(unsigned)colorCount argument, respectively. So, for example, the code formerly in
MarketObserverSwarm.m in the market application was:

[useHisto setLabels: pred];
[useHisto setColors: predictorColors];

 is now changed to:

[useHisto setLabels: pred count: numPredictorsToShow];
[useHisto setColors: predictorColors count: numPredictorsToShow];

4. Porting from 1.2 to 1.3
• The location for Makefile.appl is now $(SWARMHOME)/etc/swarm instead of $(SWARMHOME).

Change the `include' directive in your application or library make file to the new pathname.

• ActiveGraph and ActiveOutFile have been moved to the analysis library. The accommodate this,
ensure that any source file that uses these protocols includes analysis.h.

5. Porting from 1.1 to 1.2

5.1. Major changes
There are really only two main changes which are likely to affect existing users, and all other changes
required in user's applications mostly flow from these two changes:

• All Swarm functionality is now exported through a single, well-defined interface: Objective C
protocols. Essentially this means that all creatable or subclass-able protocols now follow the same
conventions as those in the defobj, activity and collections libraries. This means that static typing of
Swarm protocols is now obsolete across the whole package.

• Library header files no longer include any of their individual class header files.

• The XPixmap protocol has now been changed to Pixmap to divorce itself from it's association with
X-Windows.

Swarm Changes and Compatibility

xix

5.2. Porting Guide
• Any subclass of a class defined as a Swarm protocol now requires the *specific* importation of that

protocol's header file. Previously, only a warning was raised. This particularly affects Swarm and
SwarmObject. If you define something like:

@interface MyObject: SwarmObject

 then you need to include:

#import <objectbase/SwarmObject.h>

 Similarly, if you subclass from Swarm, you will require objectbase/Swarm.h

• All references to objects conforming to Swarm protocols should either be defined to conform to the
appropriate Swarm protocol, or be left untyped. In no circumstance should it be statically typed. In
practice, this means that you can write, either:

id <Grid2d> world; OR
id world;

 but NOT

Grid2d *world;

 Note that this only applies to protocols defined by Swarm proper, not to your own classes, although it
is good practice to adopt a convention and stick to it.

5.3. Porting example: heatbugs
HeatSpace.h

• Include header file for space/Diffuse2d (x)

Heatbug.h

• Make instance variable world conform to protocol: id <Grid2d> world NOT id Grid2d *; (x)

Heatbug.m

• In [Heatbug -setWorld:] method: make cast to protocol not static (x)

HeatbugModelSwarm.h

• HeatbugObserverSwarm.h

• Make instance variable id <Grid2d> world NOT Grid2d *world (x)

• Change static cast of [HeatbugObserverSwarm -getWorld:] method to protocol version (x)

• Change all the below to conform to their respective protocols (x)

EZGraph *unhappyGraph;
Value2dDisplay *heatDisplay;
Object2dDisplay *heatbugDisplay;

5.4. Porting example: mousetrap
MousetrapModelSwarm.h

Swarm Changes and Compatibility

xx

• Import <objectbase/Swarm.h> for subclassing from Swarm (*)

• Remove imports of <activity.h> <collections.h> <simtools.h> <objectbase.h>

irrelevant, as not used in the interface. (x)

• Make instance of Grid2d conform to protocol, not static typed. (x)

MousetrapObserverSwarm.h

• Make instances of EZGraph, Object2dDisplay conform to protocol, rather than be statically
typed. (x)

Mousetrap.h

• Remove import of <objectbase.h> (x)

6. Porting from 1.0.5 to 1.1

6.1. Major changes
The major changes which are likely to affect existing users are the following:

• Addition of a new library class "gui" which replaces the existing "tkobjc" library.

• All direct references to any Tcl/Tk code such as the "globalTkInterp" variable have been completely
removed from any library code and should not be used in any application.

• Splitting of simtools into two separate libraries: simtools and simtoolsgui. Classes that intrinsically
depend on a GUI toolkit being present (either Tcl/Tk or Java AWT) were put into simtoolsgui. This
allows a user who never intends to use a GUI toolkit, to be able to compile, link and run Swarm
applications without any GUI toolkit installed at all. This was not previously possible.

• The above change has been made possible by the fact that the dependency of Tcl/Tk in the Probing
mechanism has been completely removed. It has been replaced by the libffi/ffcall libraries. Other than
the fact that the user will need to install this new library if they are not using a binary distribution, this
new dependence should not break any user code.

• The header file to the random library is no longer included in simtools.h you need to explicitly import
random.h when you use a default random number generator.

• The XColormap class is now just Colormap to divorce it from its association with X-Windows.
Similarly, BLTGraph is now just Graph.

• The class named Histo is now named Histogram.

• Certain classes now enforce their defining by the protocol method. For example an instance of the
Raster class must be defined as (id <Raster> r) rather than (Raster * r).

• Backwardly-compatible references to the old swarmobject library are no longer supported. You
should always use objectbase.

6.2. Porting guide
• Always use the "gui" protocol when calling doing any GUI events:

• Replace all occurences of tkobjc.h with gui.h

Swarm Changes and Compatibility

xxi

• never explicitly reference any Tcl/Tk-specific code, in particular module with a call to
globalTkInterp will no longer compile.

• Using simtools/simtoolsgui:

• Add the header file simtoolsgui.h to your list of imports whenever you are referencing any of the
following classes:

ActionCache, ControlPanel, SimpleProbeDisplay, ActionHolder,
GUIComposite, VarProbeWidget, ActiveGraph, GUISwarm,
ClassDisplayWidget, MessageProbeWidget, CommonProbeDisplay,
ProbeDisplay, CompleteProbeDisplay,
ProbeDisplayManager

• Explictly import the header when you are subclassing from a given class:

• You also need to import the header file for any class for which you are subclassing. In particular,
when you are creating a GUISwarm you are subclassing from GUISwarm so you need to explicitly
import both <simtoolsgui.h> AND <simtoolsgui/GUISwarm.h>. The same is true for
<objectbase/SwarmObject.h> and <objectbase/Swarm.h>

• Colormap class name change:

• Change all references of XColormap to Colormap as it is no longer specific to X11.

• Change all method references to set the Colormap for the Value2dDisplay class ([Value2dDisplay
-Colormap]) to lowercase ([Value2dDisplay -colormap]) to avoid namespace conflicts with
Colormap class. For example, in heatbugs:

[heatDisplay setDisplayWidget: worldRaster Colormap: colormap];

should now be:

[heatDisplay setDisplayWidget: worldRaster colormap: colormap];

• Ensure that all required classes conform to their protocol:

• Make all occurences of (Raster *) to the protocol i.e. (id <Raster>)

• Similarly change any references to Colormap, ZoomRaster, InFile and OutFile.

• Import random.h explicitly:

• The header file <random.h> is no longer included by <simtools.h> should always explicitly
reference the random library if you use it in a given module (.m) file. This again reduces the inter-
library dependence, if you don't need to use the random library in your application, you shouldn't
be including it.

Swarm Changes and Compatibility

xxii

• ActionCache and ControlPanel:

• Make all references to -doTkEvents and -waitForControlEvent be to actionCache NOT
controlPanel.

6.3. Porting example: heatbugs
To help users port their applications to 1.1, I have included a checklist of changes that were required to
update heatbugs from 1.0.5 to 1.1. This may help some users as a kind of "template" for changes they
may require for their applications. The ChangeLog entries in in the heatbug-1.1 distribution also
provide further specific information.

Heatbug.h

• Replace <tkobjc/Raster.h> with <gui.h> (*)

• Make all occurences of (Raster *) to the protocol (id <Raster>) (*)

Heatbug.m

• Make all occurences of (Raster *) to the protocol (id <Raster>) (*)

• Removed <simtools.h> altogether - not used. (*)

• Added <random.h> - no longer included by <simtools.h> - should always explicitly reference the
random library if you use it in your code. (*)

HeatbugBatchSwarm.h

• Changed <swarmobject.h> to <objectbase.h> (*)

HeatbugBatchSwarm.m

• Removed redundant <collections.h> (x)

HeatbugModelSwarm.h

• Removed <tkobjc.h> irrelevant in this context - tkobjc should never be included directly in any case,
if required use <gui.h> (*)

• Changed <swarmobject.h> to <objectbase.h>. (*)

• Note we need to separately include <objectbase/Swarm.h> since you always need to the header file
for a class if you need to subclass from it. (*)

HeatbugModelSwarm.m

• Include <random.h> explicitly since we use the default random number generators. (*)

HeatbugObserverSwarm.h

• Change <simtools.h> to <simtoolsgui.h> since we are using GUI widgets (*)

• Explicitly import <simtoolsgui/GUISwarm.h> since we subclass from it (*)

• Remove: <swarmobject.h> <space.h> <activity.h> <collections.h> all are irrelevant in the header
file. (x)

• <tkobjc.h> has been relocated to the (.m) file as no gui classes are referenced directly in the header
(.h) file. It is now changed to <gui.h>. (*)

Swarm Changes and Compatibility

xxiii

• Change all references of XColormap to Colormap and use protocol form: (*)

XColormap * colormap TO
id <Colormap> colormap

• Make ZoomRaster conform to protocol, ie: (*)

ZoomRaster * worldRaster TO
id <ZoomRaster> worldRaster

HeatbugObserverSwarm.m

• Change swarmobject to objectbase (*)

• Import the <gui.h> in the implementation file - since it is not referenced in the header file (*)

• Change XColormap to Colormap - no longer specific to X11 - so name should not suggest so. (*)

• Message to set colormap for worldRaster changed name from (uppercase) Colormap to (lowercase)
colormap.(*)

• Call -enableDestroyNotification method on worldRaster after createEnd. (x)

main.m

• Need to import <simtoolsgui.h> in addition to <simtools.h> since we reference GUISwarm methods.
(*)

7. Porting from 1.0.4 to 1.0.5
• EZGraph's setGraphWindowGeometryRecordName and GUISwarm's

setControlPanelGeometryRecordName have been retired. The macro
SET_WINDOW_GEOMETRY_RECORD_NAME can now be used in any geometry archiving
context.

• After adjusting an application per previous item, be aware that the new internal naming conventions
used by `GUIComposite' classes (e.g. EZBin and GUISwarm) will probably differ from the archiving
keys in your application. Such widgets will probably lose their saved placements.

8. Porting from 1.0.3 to 1.0.4
• doTkEvents has been moved from ControlPanel to ActionCache. Be sure to direct all doTkEvent

messages to the Swarm's instance of ActionCache and not the ControlPanel (a warning message will
be generated otherwise).

• The swarmobject library has been renamed to objectbase. Although the build procedure creates a link
to maintain compatibility, applications should include <objectbase.h> instead of <swarmobject.h>.

• Avoid calling globalTkInterp in all future applications, it will not be supported from version 1.1
onwards.

• If there exists a <LIBRARY.h> file, e.g. <simtools.h>, that file is the advertised interface to
LIBRARY, and it will defined in terms of protocols. Whenever possible, define variables in terms of
the protocol they respond to:

id <ProbeMap> probeMap;

Swarm Changes and Compatibility

xxiv

 rather than using a static type:

ProbeMap *probeMap;

 (One advantage of this is that fewer imports will be needed in your application.)

9. Porting from 1.0.2 to 1.0.3
• Activity Library: Reference Release-Note #3: The AutoDrop option for any concurrent groups is

automatically set to the same as the schedule in which it is contained. (Any existing setting of the
option on the concurrent group type is ignored.) So, in 1.0.2, if you didn't set the AutoDrop flag for a
concurrentGroup initialized under a schedule, it defaulted to NO or false.

• Random Library: 13, 14

1. Reference Release-Note #13 This release includes Random v0.7, written by Sven Thommesen.
This version adds several new bit generators and distributions and rearranges the library. (Ref.
$SWARMHOME/src/random/docs/WHATS.CHANGED.in.0.7 and WHATS.NEW.in.0.7)

2. Reference Release-Note #14: With the addition of the ability to make use of the default random
number generators and distributions such that different runs start with a different seed or with the
same seed, the static seed was changed. This means that runs with 1.0.3 will not match runs
made with the static seed for 1.0.2. This is acceptable because the use of the default generators
and distributions is DEPRECATED.

10. Porting from 1.0.0 to 1.0.1
There should not be any imcompatibilities between 1.0.1 and 1.0.0. There are a couple of changes that
affect the behavior of Swarm, however. The big ones are:

• The automatic dropping of probe displays upon the dropping of an object to which those probe
displays were attached. This could break your application code if you leave in the

dropProbeDisplaysFor:

 message where you drop such an object.

• The default probeMap has changed. This is only an issue when

createProbeDisplayFor:

 is called without having previously created and installed a probeMap for that class. The new behavior
is to create a probeMap on-the-fly that contains only the instance variables for that class.

11. Beta to 1.0.0
As can be expected with any software package, it is sometimes unavoidable that changes in the
functionality of the package will cause incompatibilities with earlier versions. This is especially true
when a package is a "proof-of-principle" package like Swarm.

We've made an attempt to compile all the problems a user might have moving to the new release and put
them here. Please read this thoroughly to decide what you might need to do to your app to get it to work
with the new release.

Swarm Changes and Compatibility

xxv

1. The biggest and most pervasive problems will be due to the new random library. Notes on how to
deal with this problem are provided in the Random Library (see page 215).

2. A rather benign problem results from the repackaging of the swarmobject library. The interface to
this library was brought into sync with the defobjand collections libraries. (The rest of the errant
libraries will follow in a later release.) The solutions to the problems associated with this interface
change are detailed in the Objectbase Library (see page 183).

3. There are a couple rather benign incompatibility introduced with 1.0 in the new activity library.
Many parts of activity have changed. But, for the most part, everything works exactly the same.
For details on the incompatibilities please see the Activity Library (see page 133). Briefly, the
incompatibilities are:

• The high-level structural changes in the activity library has led to the renaming of the variable

swarmActivity

. It is recommended that

[self getActivity]

 be used in its place (if your app even used this variable, it was probably in the BatchSwarm).
This is a new message and it takes the place of the

getSwarmActivity

 message. But, the obsolete message has been left in place for backwards compatibility.

• The

getCurrentActivity()

 macro is gone. If you used the old getCurrentActivity() in your code, it won't work now. Use of
this macro was not very widespread, since its main use is to access activity library internals. One
of the other macros should be sufficient for any application.

4. The functionality of Zones has been greatly improved and expanded upon. Most of the aspects of
the idea behind Zones are now in place. However, there is one incompatibility that must be noted
in case your code is fairly old. The dropFrom: message has been removed. Even though it was still
present in recent releases, its behavior was identical to drop. Any existing usage should be
replaced by a simple drop message without any zone argument. SwarmObject subclasses are now
restricted from accessing the zone that was once contained in an instance variable; the message
getZone must be used instead.

Defobj Library
Overview

The defobj library supports the style of object-oriented programming that is used throughout Swarm. It
defines a specific style for using the Objective C language that includes its own standard conventions
for creating objects and for storage allocation, error handling, and debugging support.

1. Dependencies
The defobj library is defined and documented using the Library Interface Conventions (see page 406)
established by the defobj library. It imports the Object superclass and other standard type definitions of
the GNU Objective C runtime system.

The collections library must always be linked along with the defobj library. Even though the interface
definitions of defobj do not depend directly on collections, the implementations of these libraries both
require the presence of the other. Only the collections library should be initialized directly; initialization
of the collections library automatically initializes the defobj library as well.

2. Compatibility
No explicit compatibility issues for particular versions of Swarm

3. Usage Guide

3.1. Why Swarm uses Objective C
Swarm uses object-oriented programming not only because this is a good way to build general-purpose
software libraries, but because the very concept of an object is at the base of how you build a model in
Swarm. To build a simulation in Swarm, the first step to define the various kinds of objects that can
inhabit some real or artificial world, and the second step is to define the kinds of events that can occur to
these objects, including all the different ways that the objects can interact with each other.

The basic concept of an object is that it responds to external events, and that the only thing that really
matters about an object are the ways it can be observed responding to these events. In an object-oriented
programming system, an object is represented by some uniquely identified chunk of data, and the events
are the dynamic operations that can be made to occur on these objects.

Different object-oriented programming systems define the operations that occur on objects in different
ways. For example, in C++ the operations are called "member functions" and look much like an ordinary
function call in the C language. In Objective C, an operation on an object is called a "message" and has a
special syntax by which you call it, but a message also has arguments and behaves in many respects like
a call to a function.

The key requirement for Swarm is to be able to make all these operations happen to any object at any
time, whenever they're supposed to occur within some simulated world. It stores these operations inside

its own data structures, and when you run a simulation in Swarm, the Swarm system itself traverses
these data structures to make the necessary operations happen at the proper time.

Swarm needs to be able to make any kind of action happen to any kind of object at any time, and to do
this it needs very general-purpose structures that hold some kind of representation of the actions
themselves. That's a special requirement that not every object language provides. You already have
enough work to define the kinds of objects that can exist inside your model, and Swarm doesn't want
you to have to define an even larger number of objects for every kind of event that might occur to your
objects. Instead, it wants the object language to provide it with a representation of the operations on
objects that you've already defined. Swarm can then store these representations in its own data
structures, and make the operations happen whenever it needs to.

In Swarm, the representation of events that happen on objects are just as fundamental to the model as the
objects themselves. That's why Swarm is a "discrete-event" simulation system. But if the object system
doesn't provide a general-purpose enough representation of events as well as objects, there would be a
lot more work to do. The Objective C system, through its special data type called a "message selector,"
provides a representation of operations that is flexible enough to do this, but the C++ language does not.
(In C++, the compiler requires more information about an operation than the event structures in Swarm
would be able to provide.)

There's a host of additional reasons why Objective C has also been a good match for the requirements of
the Swarm system. Like C++, the operations on objects can be compiled to a very efficient form (though
Objective C does require a little more overhead than C++ to get the operation started). This efficiency
can be very important for a simulation, since simulations can run for very long periods of time to
explore all the behavior that might occur within their simulated worlds. Other languages, such as Lisp,
Smalltalk, and Java, also have the "dynamic message dispatch" feature that would make general-purpose
event structures possible, but they still carry significant added overhead compared to C.

Objective C is also a very simple extension to the C language. Basic knowledge of C is already
widespread, and a few days are typically all that is needed to learn the few additions of Objective C.
(Really learning the concepts of objects, however, can take much longer, no matter what object language
you try to use.)

Objective C was also a good choice for Swarm because it has a high quality, freely distributable
implementation in the GNU C compiler. One of the main concerns about Objective C is that it isn't
nearly as widely known or used as other languages like C++, but at least the GNU C compiler assures it
will be available on machines where Swarm needs to run. The OpenStep system now part of the Apple
Rhapsody project (formerly NeXTStep of the NeXT corporation), and the parallel GNUStep project,
also help assure that Objective C is a living language.

There are even more powerful aspects of Objective C that Swarm takes advantage of. Some of these are
described in the Advanced Usage Guide (see page 29) of the defobj library. But many others are at the
heart of how Swarm uses Objective C, and so are dealt with in the rest of this Usage Guide. The entire
purpose of the defobj library is to define a standard style for the use of Objective C in Swarm. This style
is backed up by a library of foundation classes that Swarm provides to support this style.

Swarm provides its own foundation classes even for such basic operations as creating an object, and
other support that user classes ordinarily receive from a builtin Object superclass. A good understanding
of the defobj library is essential for Objective C programming in Swarm. Like any programming
language, Objective C requires learning not only the rules of the language itself, but also a standard
library of initial capabilities that you build from. Objective C doesn't really have a single official

standard library (or language definition either, for that matter), but the OpenStep foundation libraries
(and the OpenStep language definition) come very close to this status.

For a variety of reasons explained here and in the Advanced Usage Guide (see page 29), Swarm doesn't
use a standard library based on the NextStep foundation interface. You can still learn the Objective C
language from other available sources, but you have to be careful to sort out the language level from the
standard object and library support they also discuss.

The index page of the Swarm documentation provides a variety of links to other Objective C resources.
In particular, it provides a link to a complete on-line reference for the Objective C language as defined
by OpenStep (formerly NextStep) and implemented by the GNU C compiler. None of the Swarm
documentation attempts to duplicate this coverage of the basic language; Swarm assumes that you learn
Objective C from other available sources. The Objective C reference (Object-Oriented Programming
and the Objective C Language (http://devworld.apple.com/techpubs/rhapsody/ObjectiveC/index.html))
is the single best available source, and it can also be ordered as a hardcopy book from the Rhapsody
Developer Documentation site (http://devworld.apple.com/techpubs/rhapsody/rhapsody.html) . Don't try
to program in Objective C without it.

3.2. Swarm style of Objective C Programming
No matter where you've learned to program in Objective C, don't try to use Objective C in Swarm
without understanding the special ways in which Swarm adapts its use of the language and the language
runtime system. Your place to find this information is right here in the defobj library. Defobj not only
provides the most basic layer of foundation class libraries for Swarm, but also serves as the place where
all the rules and guidelines for the use of Objective C in Swarm are gathered together.

Some of these rules and guidelines don't even require any specific software to implement them, but are
just conventions and recommended style that anyone programming in Objective C can follow when their
goals are similar to those of Swarm, and to a large extent often do. These kinds of conventions are the
focus of this section; following sections discuss aspects of Swarm Objective C style that depend on
specific software support.

More to come... For now, see Library Interface Conventions (see page 406) for some of this
information, and Swarm tutorials for much of the rest.

4. Advanced Usage Guide
Empty

5. Subclassing Reference
The defobj library currently includes the CreateDrop and Object_s superclasses used by other libraries.
For user objects in Swarm simulations the SwarmObject superclass in the objectbase library packages all
required behavior of these superclasses into a single, simpler superclass.

The defobj library also provides support for custom-generated classes, such as those which implement
separate phases of the standard create protocol. (See generated phase classes in the Advanced Usage
Guide.) Subclassing from custom-generated classes is still not officially supported, because the
framework for custom class generation is still being finalized. Custom-generated classes are currently

used only in the defobj, collections, and activity libraries; these libraries document the specific classes
that provide subclassing support.

In general, classes that implement a library are not automatically available for use as superclasses. Any
library must document those specific superclasses that are valid for user classes to subclass from, along
all the rules that a user subclass must follow when implementing new behavior.

6. Interface Design Notes
Nothing

7. Implementation Notes
Nothing

Documentation and Implementation Status

The current interfaces defined in defobj are expected to remain stable, with the exception of those relating to
package structure and custom-generated classes. Those facilities are in process of being totally replaced, and will not
be documented further until that replacement is complete. Details of support for defining a customized type will also
be provided later.

All the interfaces defined in the header file are currently implemented, except for the various types of zones that
would hold all allocated storage in a collection of local pages, and that would provide automatic reclaim of unused
storage. The current zone implementation supports all defined allocation messages, and also maintains the
population of the zone that consists of all objects created directly within it.

The Usage Guide section is only a start, but it does include subsections that discuss the style of Objective C
programming adopted for use throughout Swarm. There is a full set of Interface Reference sections, though some
details remain to be filled in. Throughout the documentation, a parenthesized comment that starts with (.. indicates
an editorial comment on the current status of implementation or documentation.

Revision History
2004-07-16 defobj.h schristley

 ([FArguments -addObject:]): Definition conflicts with NSArray, so use NSArray definition for GNUstep.

2003-09-03 defobj.h alex

 Use '//E:' syntax instead of '//M:' to tag examples which are intended to be inline elements of code. In this way
ampersands which cause problems for the XML DocBook backend are escaped properly.

2003-05-10 defobj.h pauljohn

 inserted headers and explanation for all methods listed in next entries.

2002-01-02 defobj.h mgd

 (raiseEvent): Avoid concatenation to __FUNCTION__.

2001-12-17 defobj.h mgd

 Remove const from COMOBJECT.

2001-10-10 defobj.h mgd

 Declare getDatasetType.

2001-02-23 defobj.h mgd

 (fcall_type_t): Add fcall_type_jselector. (FCALL_TYPE_COUNT): Increment.

2001-01-28 defobj.h mgd

 (val_t): Moved from objectbase.h. (LanguageJS): New symbol.

2001-01-27 defobj.h mgd

 (fcall_type_t): Add fcall_type_iid. (FCALL_TYPE_COUNT): Increment. (types_t): Add iid.

2001-01-24 defobj.h mgd

 Use const void * for COMOBJECT.

2001-01-05 defobj.h mgd

 (callTypes): Add JScall.

2000-12-17 defobj.h mgd

 Add getLastArgIndex.

2000-10-14 defobj.h mgd

 (DefinedObject): Add -conformsTo:.

2000-09-25 defobj.h mgd

 (types_t): Move to be visible to C++.

2000-09-24 defobj.h mgd

 (fcall_type_t): Swap fcall_type_ulonglong and fcall_type_slonglong. (FCALL_TYPE_COUNT): Add.

2000-09-23 defobj.h mgd

 Add preprocessor hair to make fcall_type_t available to C++.

2000-09-22 defobj.h mgd

 Add SaveWarning.

2000-09-13 defobj.h mgd

 (arguments): Add <Arguments> qualifier.

2000-09-13 defobj.h mgd

 (LanguageCOM, LanguageJava, LanguageObjc): Add.

2000-09-12 defobj.h mgd

 (COMOBJECT): New typedef.

2000-08-15 defobj.h mgd

 (Arguments): Call setArgc argument count "count" and make it unsigned.

2000-07-24 defobj.h mgd

 (Arguments): Fix declaration of setInhibitExecutableSearchFlag:. Move getReclaimPolicy and getStackedSubzones
to design document.

2000-07-16 defobj.h mgd

 (Archiver): Adopt RETURNABLE.

2000-07-11 defobj.h mgd

 (GSTRDUP): Add.

2000-06-29 defobj.h mgd

 (CreatedClass): Remove return type from updateArchiver:.

2000-06-22 defobj.h mgd

 (types_t): Make _long_double of that type.

2000-05-18 defobj.h mgd

 (GetName): Move before DefinedObject. (DefineObject): Adopt it. (DefinedClass): Don't adopt it (it's inherited).
(HDF5): Remove -getName.

2000-04-27 defobj.h mgd

 ([Arguments +createBegin, -createEnd]): Remove. ([HDF5 +createBegin:, -creatEnd, -drop]): Remove.
([{HDF5CompoundType,FArguments,FCall} +createBegin: -createEnd]): Remove.

2000-03-28 mgd

 Swarmdocs 2.1.1 frozen.

2000-03-25 defobj.h mgd

 Remove PTRFMT.

2000-03-24 defobj.h mgd

 (Zone): Note that dropping a zone doesn't drop block allocations, only objects.

2000-02-29 mgd

 Swarmdocs 2.1 frozen.

2000-02-18 defobj.h mgd

 (FArguments, FCall): Add Zone argument conformance to +create:* methods.

2000-01-22 defobj.h mgd

 (Zone): Remove containsAlloc:.

2000-01-19 defobj.h mgd

 Don't declare generate_class_name.

1999-12-21 defobj.h mgd

 (types_t): Add boolean.

1999-11-19 defobj.h mgd

 New types call_t and JOBJECT.

1999-10-29 defobj.h mgd

 Documentation updates.

1999-08-22 defobj.h mgd

 Add (id <Zone>) argument and return types. Reorganize. Add (id <HDF5>) argument types.

1999-08-09 defobj.h mgd

 (types_t): Add Class.

1999-08-08 defobj.h mgd

 (types_t): Add _long_double.

1999-08-05 defobj.h mgd

 (ZSTRDUP, SSTRDUP, OSTRDUP, STRDUP, OFREEBLOCK, ZFREEBLOCK): New macros.

1999-06-28 defobj.h alex

 Reflect Archiver changes. Make `Archiver' an abstract protocol. (HDF5Archiver, LispArchiver): New protocols
now conform to and CREATABLE.

1999-06-13 defobj.h mgd

 (types_t): Add signed and unsigned types.

1999-06-09 defobj.h alex

 (initDefobj): Declare to accept new `appName' argument.

1999-06-08 defobj.h alex

 (Archiver): Add ([Archiver_c +create:from{Lisp,HDF5}Path:]) method to protocol.

1999-06-05 defobj.h alex

 (Archiver): Add method [Archiver_c getWithZone:object:] to protocol. Document all existing methods.

1999-05-29 defobj.h mgd

 Import externvar.h.

1999-05-28 defobj.h mgd

 Use `externvar' for external variable declarations.

1999-05-20 defobj.h alex

 Declare extern {lisp,hdf5}AppArchiver. (Archiver): Add -setDefaultApp{Lisp,HDF5}Path to protocol definition.

1999-04-29 defobj.h mgd

 (GetName): Add instance -getName, remove +getName:.

1999-04-22 defobj.h mgd

 Clarify docs on addRef:withArgument:. (Zone): Switch return type of getPageSize from int to size_t.
(FArguments): Add using phase tag before getResult.

1999-04-21 defobj.h mgd

(MAKE_PARSE_FUNCTION_NAME): New macro.

1999-04-21 defobj.h mgd

 (Serialization): Move -lispIn: and -hdf5In: to setting phase. (FArguments): Add.

1999-04-16 defobj.h mgd

 (types_t): New typedef.

1999-03-23 defobj.h vjojic

 (FCall): Mark phases in FCall protocol.

1999-03-23 defobj.h mgd

 (FCall): Add getReturnVal.

1999-03-17 defobj.h vjojic

 Add new protocol FCall.

1999-02-27 defobj.h mgd

 Put all setters needed for createEnd to creating phase. Remove duplicate setAppModeString: in setting.

1999-02-20 defobj.h mgd

 Disable CreateDrop protocol; it is already an @interface.

1999-02-19 defobj.h vjojic

 Add CreateDrop protocol.

1999-02-16 defobj.h alex

(generate_class_name): Prefix with `extern'.

1999-01-14 defobj.h mgd

 (DSIZE): New macro for sizing decimal scratch buffers.

1999-01-12 defobj.h mgd

 (HDF5): New protocol.

1999-01-10 defobj.h mgd

 (Serialization): Add deep: option to lispOut and hdf5Out. (Archiver): Add deep argument to lispArchiverPut,
hdf5ArchvierPut.

1999-01-10 defobj.h mgd

 (LoadError, SaveError): New error types.

1999-01-08 defobj.h mgd

 (DefinedClass): Declare lispInCreate:, lispIn:, lispOut:, updateArchiver, and copyClass.

1999-01-06 defobj.h mgd

 (Arguments): Declare +createBegin:, -createEnd, -setArgc:Argv:, -setAppModeString:, -setOptionFunc:, -
setBugAddress:, and -setVersion:. Move addOptions: to creating phase.

1999-01-06 defobj.h mgd

 (DefinedClass): Declare addVariable. (Serialization): Declare updateArchiver.

1998-12-28 defobj.h mgd

 (Archiver, Serialization): Add protocol summary and description strings.

1998-12-21 defobj.h mgd

(archiver{Register,Unregister}, {lisp,HDF5}Archiver{Get,Put}): Prefix declaration with `extern'.

1998-12-19 defobj.h mgd

 (Archiver): New protocol. Move archiver functions inside this protocol declaration.

1998-12-18 defobj.h mgd

 Add archiver{Register,Unregister}, and {HDF5,lisp}Archiver{Get,Put} to Serialization protocol.

1998-12-18 defobj.h mgd

 (Symbol): Remove setName:.

1998-12-17 defobj.h mgd

 Remove readOnly accessors from SetInitialValue protocol (moved to design document).

1998-11-17 defobj.h mgd

 (Serialization): New protocol. Put lispIn, lispInQuotedExpr, and archvierSave here. Put lispInCreate: in creating
phase. Rename lisp{in,out}: to lisp{In,Out}:. Declare defobj_lookup_type.

1998-11-13 defobj.h mgd

 (DefinedObject): Declare +lispin:expr: in creating phase. (lispinQuotedExpr): Declare.
(MAKE_OBJC_FUNCTION_NAME): Define (was confined to Archiver.m).

1998-11-12 defobj.h mgd

 (Dataset): New protocol. (Arguments): Add protocol (from objectbase).

1998-07-22 defobj.h mgd

 Replace @deftype with @protocol throughout.

1998-06-18 defobj00.sgml alex

 Put CITETITLE tag around reference to the `Object-Oriented Programming and the Objective C Language' volume.

1998-06-17 Makefile.am mgd

 Include from refbook/ instead of src/.

1998-06-15 Makefile.am mgd

 (MODULE): New variable. Include Makefile.rules from src. Remove everything else.

1998-06-14 defobj.h mgd

 Remove mention of what might happen with other (nonexistent) zone types. Remove mention of status of current
Zone implementation. Remove mention of -setReclaimPolicy:, -setStackedSubzones:, -getSubzones, -
mergeWithOwner, -getSubzone:. Remove -reclaimStorage, -releaseStorage, xfprint, and xfprintid declarations.
Improve description of xsetname, xprint, xprintid, xfprint, xfprintid, xexec, and xfexec.

1998-06-12 defobjpages.sgml, defobjcont.sgml mgd

 Update IDs to SWARM.module.SGML.type.

1998-06-06 defobj.ent mgd

 Use public identifiers.

1998-06-05 Makefile.am mgd

 (swarm_ChangeLog): Add.

1998-06-03 defobj.h mgd

 Updated documentation tags. (PTRFMT): Use %p.

1998-06-01 defobj.h alex

 ([DefinedObject -{xfprint,xfprintid}): Added method and doc tags that should exist to DefinedObject protocol.

1998-05-28 defobj.h mgd

 Fix //# doc strings (following colon required).

1998-05-26 defobj.ent.in mgd

 Make defobjrevhistory be a build-directory path.

1998-05-26 defobj.ent.in alex

 Added entity (defobjrevhistory) for the automatically generated revision history.

1998-05-26 defobj.h alex

 (raiseEvent,M(), initModule, globalZone, scratchZone, defsymbol, defwarning, deferror): Added (//#) doc strings.
(<{Warning,Error}>): Added (//G) doc strings after each definition. (<Symbol>, _obj_formatIDString,

objc_get_class, _obj_debug, (_obj_xerror, *_obj_xdebug, xsetname, xprint, xprintid, xfprint, xfprintid, xexec,
xfexec): Added (//G) doc strings before each definition.

1998-05-23 Makefile.am mgd

 New file.

1998-05-23 defobj.ent.in mgd

 New file.

1998-05-23 defobj.ent mgd

 Removed.

1998-05-22 mgd

 Begin revision log.

1998-05-06 defobj.h mgd

 Remove instances of <p> in the documentation. Minor changes to method spacing. (Create): Move some
documentation from createBegin: to be general documentation. (Error): Add a description.

1998-05-04 defobj.h mgd

 Add CREATING and USING tags where absent.

1998-04-27 defobj.h mgd

 Add documentation tags.

1998-04-17 defobj.h mgd

 (GetName): getName is factory method. (DefinedClass): All methods are factory methods.

1998-01-27 defobj.h mgd

 Declare nameToObject function.

1997-12-08 defobj.h mgd

 Constify argument to setDisplayName. Constify return of getDisplayName. Constify return of getName in
GetName deftype. Constify setName argument to Symbol +create. Constify argument to Symbol setName. Constify
argument to Warning setMessageString. Constify return of Warning getMessageString. Constify argument to
CreatedClass setName. Constify argument to objc_get_class. Constify name argument to xsetname, exec, and
xfexec. Drop APIChange warning. Reformatting throughout.

1997-12-08 defobj.h mgd

 Reenable LibraryUsage, DefaultAssumed, and ObsoleteFeature. Put back ObsoleteMessage (gepr argues they are
important for a minor release).

1997-12-07 defobj.h mgd

 Add APIChange to the standard error types. Delete ObsoleteMessage, since it appears to be redundant with
ObsoleteFeature. Disable LibraryUsage, DefaultAssumed, and ObsoleteFeature because they aren't used.

38

Archiver

Name
Archiver — High level abstract serialization interface.

Description
High level abstract serialization interface.

Protocols adopted by Archiver
Create (see page 46)

Drop (see page 54)

RETURNABLE (see page 66)

Methods

Phase: Creating
• - setDefaultAppPath

Specify that the Archiver to use the default application path

• - setDefaultPath

Specify that the Archiver instance use the default system path

• - setSystemArchiverFlag: (BOOL)systemArchiverFlag

Make the Archiver expect application metadata, such as `mode' information

• - setPath: (const char *)path

Set the physical path for the Archiver to read/write

• - setInhibitLoadFlag: (BOOL)inhibitLoadFlag

Make the Archiver ignore any file found in the specified path

Phase: Using
• - (void)sync

Ensure that that all registered the requested backend

• - getWithZone: (id <Zone>)aZone key: (const char *)key

Create the object with `key' in the specified Zone

• - getObject: (const char *)key

Create the object with `key' using the Archiver's own Zone

• - (void)putShallow: (const char *)key object: object

Defobj

39

As per -putDeep, but only make a shallow version

• - (void)putDeep: (const char *)key object: object

Register with the Archiver a deep serialization of the object
(serialization only occurs when Archiver is saved)

• - (void)unregisterClient: client

• - (void)registerClient: client

Defobj

40

Arguments

Name
Arguments — A class that provides customizable command line argument parsing support

Description
A class that provides customizable command line argument parsing support

Protocols adopted by Arguments
Create (see page 46)

Drop (see page 54)

CREATABLE (see page 44)

Methods

Phase: Creating
• - (int)parseKey: (int)key arg: (const char *)arg

This method is called for each option that occurs.

• + createArgc: (int)argc Argv: (const char **)argv appName: (const char
*)appName version: (const char *)version bugAddress: (const char
*)bugAddress options: (struct argp_option *)options optionFunc: (int (*)
(int, const char *))optionFunc inhibitExecutableSearchFlag:

(BOOL)inhibitExecutableSearchFlag

• - (void)addOption: (const char *)name key: (int)key arg: (const char *)arg
flags: (int)flags doc: (const char *)doc group: (int)group

Takes an option specification that includes the following information:

- The name of the option specification

- The key of the option. This an integer that, if printiable, is the
single-character use of the option. For example, `-p' vs. `--protocol'
are the different versions of the same thing. One is intended to be
mnemonic, the other convenient.

- If non-NULL, an argument label that says that the option requires an
argument (in this case, the protocol name).

- Flags that change the visibility and parsing of the option

- Documentation for the option

- A sorting integer; relative placement of the option in the help
screen.

• - addOptions: (struct argp_option *)options

• - setVersion: (const char *)version

Defobj

41

• - setBugAddress: (const char *)bugAddress

• - setOptionFunc: (int (*) (int, const char *))optionFunc

• - setAppModeString: (const char *)appModeString

• - setAppName: (const char *)appName

• - setArgc: (unsigned)count Argv: (const char **)theArgv

Phase: Setting
• - setFixedSeed: (unsigned)seed

• - setDefaultAppDataPath: (const char *)path

Specify a default path to use for data files when installed location of
Swarm cannot be determined. Defaults to current directory.

• - setDefaultAppConfigPath: (const char *)path

Specify a default path to use for configuration files when installed
location of Swarm cannot be determined. Defaults to current directory.

• - setVerboseFlag: (BOOL)verboseFlag

• - setVarySeedFlag: (BOOL)varySeedFlag

• - setBatchModeFlag: (BOOL)batchModeFlag

• - setInhibitExecutableSearchFlag: (BOOL)theInhibitExecutableSearchFlag

• - setInhibitArchiverLoadFlag: (BOOL)inhibitArchiverLoadFlag

Phase: Using
• - (BOOL)getInhibitArchiverLoadFlag

• - (BOOL)getShowCurrentTimeFlag

• - (const char *)getAppConfigPath

A path where application-specific configuration files can be expected to
be found.

• - (const char *)getAppDataPath

A path where application-specific data files can be expected to be found.

• - (const char *)getDataPath

• - (const char *)getConfigPath

• - (const char *)getSwarmHome

• - (const char *)getExecutablePath

• - (const char **)getArgv

• - (int)getLastArgIndex

• - (int)getArgc

• - (const char *)getAppModeString

• - (const char *)getAppName

Defobj

42

• - (BOOL)getVerboseFlag

• - (unsigned)getFixedSeed

• - (BOOL)getFixedSeedFlag

• - (BOOL)getVarySeedFlag

• - (BOOL)getBatchModeFlag

Examples
Example #1
Let's say you want to add a new argument, say `protocol' to your standard
list of commands. In other words you want the following to happen at the
command line when you type --help.

mgd@wijiji[/opt/src/mgd/src/mySwarmApp] $./mySwarmApp --help
Usage: mySwarmApp [OPTION...]

-s, --varyseed Select random number seed from current time
-S, --seed=INTEGER Specify seed for random numbers
-b, --batch Run in batch mode
-m, --mode=MODE Specify mode of use (for archiving)
-p, --protocol=PROTOCOL Set protocol
-?, --help Give this help list

--usage Give a short usage message
-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or
optional for any corresponding short options.

Report bugs to bug-swarm@swarm.org.

To implement this you need to make your own subclass of Arguments
like the following:

#import <defobj/Arguments.h>

@interface MySwarmAppArguments: Arguments_c
{

const char *protocolArg;
}
- (const char *)getProtocolArg;
@end

@implementation MySwarmAppArguments

+ createBegin: (id <Zone>)aZone
{

static struct argp_option options[] = {
{"protocol", 'p', "PROTOCOL", 0, "Set protocol", 3},
{ 0 }

Defobj

43

};

MySwarmAppArguments *obj = [super createBegin: aZone];

[obj addOptions: options];
return obj;

}

- (int)parseKey: (int)key arg: (const char *)arg
{

if (key == 'p')
{

protocolArg = arg;
return 0;

}
else

return [super parseKey: key arg: arg];
}

- (const char *)getProtocolArg
{
return protocolArg;

}

@end

To actually invoke this in the main.m program, you do the following:

int
main (int argc, const char ** argv)
{

initSwarmArguments (argc, argv, [MySwarmAppArguments class]);

// the usual - buildObjects:, - buildActions:, - activateIn: calls

return 0;
}

Defobj

44

BehaviorPhase

Name
BehaviorPhase — Created class which implements a phase of object behavior.

Description
Created class which implements a phase of object behavior.

Protocols adopted by BehaviorPhase
CreatedClass (see page 48)

Methods

Phase: Creating
• - (void)setNextPhase: aClass

Phase: Using
• - getNextPhase

CREATABLE

Name
CREATABLE — Declare that a defined type supports creation.

Description
Declare that a defined type supports creation.

Protocols adopted by CREATABLE
None

Methods
None

Defobj

45

Copy

Name
Copy — Copy all state defined as part of object.

Description
An object type that supplies the copy operation defines what it includes as the contents of an object
copied. There is no global rule for what is considered "inside" a copied object vs. merely referenced by
it. (There is no fixed notion of "shallow" vs. "deep" copy found in some object libraries.) After copying,
the new object may still contain some references to other elements also referenced by the starting object,
but in general the new object minimizes any dependencies shared with the starting object. Any object
type supplying the copy message should also supply documentation on its rules for copied objects.

Protocols adopted by Copy
None

Methods

Phase: Using
• - copy: (id <Zone>)aZone

The copy message creates a new object that has the same contents and
resulting behavior as a starting object, except that an independent copy of
the contents of the starting object is created so that further changes to
one object do not affect the other. The zone argument specifies the source
of storage for the new object. The message returns the id of the new
object created.

Defobj

46

Create

Name
Create — Create an instance of a type with optional customization.

Description
The Create supertype defines standard messages that provide a general-purpose protocol for creating
new objects. These messages may be used either to create a new instance of a type in one message, or to
bracket a series of messages that customize available options for an object to be created. The separation
of create-time specifications from later behavior of an object gives substantial flexibility to adapt a
generic type to particular needs.

These create messages may be implemented either by a type that hides its implementing classes, or
directly by a class that adopts these messages as a uniform interface for creating objects. If implemented
directly by a class, then the class object serves as the type object in all message descriptions that follow.
Otherwise, a type object might be implemented in a variety of ways that guarantee only that published
messages on a type are accepted.

In addition to the create messages defined by Create, an object type may support any other messages of
any other names or calling conventions. These messages define only a standard method for creating new
objects that other types are free to inherit and implement in conformance with a uniform convention.
Further conventions are established elsewhere create combination messages for standard ways in which
create messages that combine several steps can be combined.

Any interim object returned by either createBegin: or customizeBegin: supports the getZone and drop
messages that a finalized instance may also support. These messages are defined by the Drop type,
which is normally inherited by a type to declare these messages on a finalized instance. This type is not
inherited by the Create type because the messages would then apply to the finalized instance, not to the
interim object. Even though not declared, the messages are available on the interim objects nonetheless.
The drop message on an interim object may be used if it turns out that a finalized version is no longer
required after creation or customization has already begun.

The createBegin: and createEnd messages bracket a series of messages that specify options for an object
being created. The intermediate messages can set values defined as parameters of the type, or provide
other forms of specification using available messages. A particular object type defines the specific
messages that are valid for sending during this interim creation phase.

Protocols adopted by Create
DefinedObject (see page 52)

Customize (see page 49)

Methods

Phase: Creating
• - createEnd

Defobj

47

The createEnd message completes the process of specifying available
options for an object being created. Typically it validates that requested
options are valid and consistent with one another, and raises an error if
they are not. The standard, predefined error InvalidCombination may be
raised by createEnd to indicate an invalid combination of requests, or
other, more specific forms of error handling may be used.

If all requests received since the initial createBegin: are valid, both
individually and in combination with each other, then createEnd determines
a finalized form of object that satisfies all requests received and then
returns this object. Any additional storage required for the finalized
object is taken from the same zone originally passed to createBegin. The
object may have whatever implementation is selected to best satisfy a
particular request. Different requests may result in entirely different
implementations being returned. The only guarantee is that a returned
object supports the messages defined for further use of the finalized
object. If a type was defined by a @protocol declaration, these messages
are those appearing in either the SETTING or USING sections.

On return from createEnd, the id of the interim object returned by
createBegin: is no longer guaranteed to be valid for further use, and
should no longer be referenced. A variable which holds this such an id can
be reassigned the new id returned by createEnd, so that the same variable
holds successive versions of the object being created.

• + createBegin: (id <Zone>)aZone

createBegin: returns an interim object intended only for receiving create-
time messages. If a type was defined by a @protocol declaration, these
messages are those appearing in either the CREATING or SETTING sections.
Otherwise, the messages valid as create-time messages are defined by the
type without any specific syntactic marker.

• + create: (id <Zone>)aZone

The create: message creates a new instance of a type with default options.
The zone argument specifies the source of storage for the new object. The
receiving object of this message is a previously defined type object. The
message is declared as a class message (with a + declaration tag) to
indicate that the message is accepted only by the type object itself rather
than an already created instance of the type (which a - declaration tag
otherwise defines).

The create: message returns the new object just created. This object is
an instance of some class selected to implement the type. The class which
a type selects to implement an object may be obtained by the getClass
message, but is not otherwise visible to the calling program. A caller
never refers to any class name when creating objects using these messages,
only to type names, which are automatically published as global constants
from any @protocol declaration.

Examples
Example #1
newArray = [Array createBegin: aZone];
[newArray setInitialValue: aList];

Defobj

48

[newArray setDefaultMember: UnsetMember];
[newArray setCount: [aList getCount] * 2);
newArray = [newArray createEnd]; // ! note reassignment of newArray

CreatedClass

Name
CreatedClass — Class with variables and/or methods defined at runtime.

Description
Class with variables and/or methods defined at runtime.

Protocols adopted by CreatedClass
Create (see page 46)

DefinedClass (see page 51)

Methods

Phase: Creating
• - (void)updateArchiver: (id <Archiver>)archiver

• - (void)hdf5OutShallow: (id <HDF5>)hdf5Obj

• - (void)lispOutShallow: stream

• - hdf5InCreate: hdf5Obj

• - lispInCreate: expr

• - at: (SEL)aSel addMethod: (IMP)aMethod

• - setDefiningClass: aClass

• - setSuperclass: aClass

• - setClass: (Class)aClass

• - setName: (const char *)name

Phase: Using
• - getDefiningClass

Defobj

49

Customize

Name
Customize — Create-phase customization.

Description
Some types accept create-time messages not only when creating a new instance, but to customize a new
version of the type itself. Objects created from a customized type will have all options preset that create-
time messages sent to the customized type object have already set. If many objects all need the same
create-time options, it is often simpler (and can also be faster) to create a customized version of a type
first, and then create further instances from that type.

Customizing a type object does not modify the original type object, but instead creates a new type object
that has the customizations built-in. A create: message on the new type object creates a new instance as
if the same sequence of create-time messages had been sent to the original type object using
createBegin: and createEnd. A type is customized by bracketing the sequence of create-time messages
not with the createBegin: and createEnd messages used to create a new instance, but with
customizeBegin: and customizeEnd messages instead.

Whether a customized version of a type can be created depends on the implementation of the type itself.
If a type does not support customization, a customizeBegin: message on the type raises an error. All
types defined by an @protocol declaration may be relied on to support at least one cycle of
customization to create a new type object. Whether an already customized type object (returned by
customizeEnd) supports a further cycle of customization (by another sequence of
customizeBegin:/customizeEnd) depends on the implementation of the original starting type. A type
should not be relied on to support more than one cycle of customization unless it is specifically
documented to do so.

Protocols adopted by Customize
None

Methods

Phase: Creating
• - customizeCopy: aZone

The customizeCopy: message creates a new copy of the interim object
returned by customizeBegin: which may be used for further customizations
that do not affect the customization already in progress. It may be used
to branch off a path of a customization in progress to create an alternate
final customization.

customizeCopy may be used only on an interim object returned by
customizeBegin: and not yet finalized by customizeEnd. The new version of
the interim object being customized may be allocated in the same or
different zone as the original version, using the zone argument required by
customizeCopy:

Defobj

50

Example -customizeCopy: #1
newArrayType1 = [Array customizeBegin: aZone];
[newArrayType1 setCount: 100];
newArrayType2 = [newArrayType2 customizeCopy: aZone];
[newArrayType2 setDefaultMember: UnsetMember];

newArrayType1 = [newArrayType1 customizeEnd];
newArrayType2 = [newArrayType2 customizeEnd];
array1 = [newArrayType1 create: aZone]; // no DefaultMember option
array2 = [newArrayType create: aZone]; // DefaultMember option set

• - customizeEnd

Returns the new, customized version of the original type.

• + customizeBegin: aZone

Returns an interim value for receiving create-time messages much like
createBegin:.

The zone passed to customizeBegin: is the same zone from which storage for
the new, finalized type object will be taken. This zone need not be the
same as any instance later created from that type, since a new zone
argument is still passed in any subsequent create message on that type.

Examples
Example #1
newArrayType = [Array customizeBegin: aZone];
[newArrayType setCount: 100];
newArrayType = [newArrayType customizeEnd];
array1 = [newArrayType create: aZone];
array2 = [newArrayType create: aZone];
// [array1 getCount] and [array2 getCount] are both 100

Defobj

51

DefinedClass

Name
DefinedClass — Class which implements an interface of a type.

Description
Class which implements an interface of a type.

Protocols adopted by DefinedClass
DefinedObject (see page 52)

Methods

Phase: Using
• + (IMP)getMethodFor: (SEL)aSel

• + getTypeImplemented

• + (void)setTypeImplemented: aType

• + (BOOL)isSubclass: aClass

• + getSuperclass

Defobj

52

DefinedObject

Name
DefinedObject — Object with defined type and implementation.

Description
DefinedObject is the top-level supertype for all objects that follow the object programming conventions
of the defobj library. The messages defined by this type are the only messages which should be assumed
to be automatically available on objects that follow these conventions. In particular, use of messages
defined by the Object superclass of the GNU Objective C runtime should not generally be assumed
because future implementations of some objects might not give continued access to them.

The DefinedObject type defines a minimum of standard messages, and leaves to other types the
definition of message that might or might not apply in any general way to particular objects.

Protocols adopted by DefinedObject
GetName (see page 60)

Methods

Phase: Using
• - (id <Zone>)getZone

The getZone message returns the zone in which the object was created.

• - (void)xfprintid

print id for each member of a collection on debug output stream

• - (void)xfprint

print description for each member of a collection on debug output stream

• - (void)xprintid

Like describeID:, but output goes to standard output.

• - (void)xprint

Like describe:, but output goes to standard output.

• - (void)describeID: outputCharStream

Prints a one-line describe string, consisting of the built-in default to
outputCharStream.

• - (void)describe: outputCharStream

Defobj

53

The describe: message prints a brief description of the object for debug
purposes to the object passed as its argument. The object passed as the
outputCharStream argument must accept a catC: message as defined in String
and OutputStream in the collections library. Particular object types may
generate object description strings with additional information beyond the
built-in default, which is just to print the hex value of the object id
pointer along with the name of its class, and the display name of the
object, if any.

• - (const char *)getDisplayName

Return a string that identifies an object for external display purposes,
either from a previously assigned string or an identification string
default

• - (void)setDisplayName: (const char *)displayName

Assigns a character string as a name that identifies an object for display
or debug purposes.

• - perform: (SEL)aSel

A local implementation of an Object method.

• - perform: (SEL)aSel with: anObject1

A local implementation of an Object method.

• - perform: (SEL)aSel with: anObject1 with: anObj2

A local implementation of an Object method.

• - perform: (SEL)aSel with: anObject1 with: anObj2 with: anObj3

Perform a selector with three object arguments.

• - (int)compare: anObject

A local implementation of an Object method.

• - (void)removeRef: (ref_t)refVal

Remove an external reference to an object.

• - (ref_t)addRef: (notify_t)notifyFunction withArgument: (void *)arg

Adds an external reference to an object that is notified when a an object
is dropped.

• - (const char *)getTypeName

getTypeName returns the name of the originating type of this object.

• - (Class)getClass

getClass returns the class that implements the current behavior of an
object.

• + (BOOL)conformsTo: (Protocol *)protocol

• - (BOOL)conformsTo: (Protocol *)protocol

• - (BOOL)respondsTo: (SEL)aSel

Defobj

54

The respondsTo: message returns true if the object implements the message
identified by the selector argument. To implement a message means only
that some method will receive control if the message is sent to the object.
(The method could still raise an error.) The respondsTo: message is
implemented by direct lookup in a method dispatch table, so is just as fast
as a normal message send. It provides a quick way to test whether the type
of an object includes a particular message.

Drop

Name
Drop — Deallocate an object allocated within a zone.

Description
The Drop supertype defines the drop message, which is a standard message for indicating that an object
no longer exists and will never again be referenced. Any future attempt to reference a dropped object is
an error. This error may or not produce predictable effects depending on the level of debug checking and
other factors.

Protocols adopted by Drop
None

Methods

Phase: Using
• - (void)drop

Immediate effects of the drop message depends on the subtype of Zone used
to provide storage for the object. For some zone types, the drop message
immediately deallocates storage for the object and makes the freed storage
available for other use. Subsequent use could include the allocation of a
new object at precisely the same location, resulting in a new object id
identical to a previously dropped one.

The Drop type may be inherited by any type that provides drop support for
its instances. In addition to freeing the storage and invalidating the
object, a drop message may release other resources acquired or held within
the object. Not every object which can be created can also be dropped, and
some objects can be dropped which are not directly creatable. Some objects
may be created as a side effect of other operations and still be droppable,
and some objects may be created with links to other objects and not
droppable on their own. A type independently inherits Create or Drop
types, or both, to indicate its support of these standard interfaces to
define the endpoints of an object lifecycle.

Defobj

55

Error

Name
Error — A condition which prevents further execution.

Description
A condition which prevents further execution.

Protocols adopted by Error
Warning (see page 74)

CREATABLE (see page 44)

Methods
None

Macros
• deferror(name, message)

macro used to create and initialize a Warning symbol

Globals
id <Error> SourceMessage

 message in the source defines error
id <Error> NotImplemented

 requested behavior not implemented by object
id <Error> SubclassMustImplement

 requested behavior must be implemented by subclass
id <Error> InvalidCombination

 invalid combination of set messages for create
id <Error> InvalidOperation

 invalid operation for current state of receiver
id <Error> InvalidArgument

 argument value not valid
id <Error> CreateSubclassing

 improper use of Create subclassing framework
id <Error> CreateUsage

 incorrect sequence of Create protocol messages
id <Error> OutOfMemory

 no more memory available for allocation

Defobj

56

id <Error> InvalidAllocSize

 no more memory available for allocation
id <Error> InternalError

 unexpected condition encountered in program
id <Error> BlockedObjectAlloc

 method from Object with invalid allocation
id <Error> BlockedObjectUsage

 method inherited from Object superclass
id <Error> ProtocolViolation

 object does not comply with expected protocol
id <Error> LoadError

 unable to access a resource
id <Error> SaveError

 unable to save a resource

EventType

Name
EventType — A report of some condition detected during program execution.

Description
A report of some condition detected during program execution.

Protocols adopted by EventType
Symbol (see page 73)

Methods

Phase: Using
• - (void)raiseEvent

Raise an event noting the event symbol type.

• - (void)raiseEvent: (const void *)eventData : ...

Raise an event noting the event symbol type using a format string and
arguments.

Macros
• raiseEvent(eventType, formatString, args...)

macro to raise Warning or Error with source location strings

Defobj

57

FArguments

Name
FArguments — A language independent interface to dynamic call argument construction.

Description
A language independent interface to dynamic call argument construction.

Protocols adopted by FArguments
Create (see page 46)

Drop (see page 54)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setBooleanReturnType

• - setReturnType: (fcall_type_t)retType

• - setObjCReturnType: (char)type

• - addJavaObject: (JOBJECT)obj

• - addSelector: (SEL)aSel

• - (void)addObject: obj

• - addString: (const char *)value

• - addLongDouble: (long double)value

• - addDouble: (double)value

• - addFloat: (float)value

• - addUnsignedLongLong: (unsigned long long)value

• - addLongLong: (long long)value

• - addUnsignedLong: (unsigned long)value

• - addLong: (long)value

• - addUnsigned: (unsigned)value

• - addInt: (int)value

• - addUnsignedShort: (unsigned short)value

• - addShort: (short)value

• - addUnsignedChar: (unsigned char)value

Defobj

58

• - addBoolean: (BOOL)value

• - addChar: (char)value

• - addArgument: (void *)value ofObjCType: (char)type

• - addArgument: (types_t *)value ofType: (fcall_type_t)type

• + create: (id <Zone>)aZone setSelector: (SEL)aSel

• - setJavaSignature: (const char *)javaSignature

• - setSelector: (SEL)aSel

The selector is used to set argument types. Some languages won't have
any, and so for those languages this need not be called.

• - setLanguage: (id <Symbol>)languageType

Phase: Using
• - (void *)getResult

• - (id <Symbol>)getLanguage

• - (val_t)getRetVal

Defobj

59

FCall

Name
FCall — A language independent interface to dynamic calls.

Description
A language independent interface to dynamic calls.

Protocols adopted by FCall
Create (see page 46)

Drop (see page 54)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setJavaMethodFromName: (const char *)methodName inClass: (const char

*)className

• - setJavaMethodFromName: (const char *)methodName inObject: (JOBJECT)jObj

• - setMethodFromName: (const char *)methodName inObject: object

• - setMethodFromSelector: (SEL)method inObject: object

• - setFunctionPointer: (func_t)fn

• - setArguments: args

• + create: (id <Zone>)aZone target: obj methodName: (const char *)methodName
arguments: (id <FArguments>)fa

• + create: (id <Zone>)aZone target: obj selector: (SEL)sel arguments: (id

<FArguments>)fa

Phase: Using
• - (func_t)getFunctionPointer

• - (retval_t)getRetVal: (retval_t)retVal buf: (types_t *)buf

• - (void *)getResult

• - (void)performCall

• - getArguments

• - (call_t)getCallType

Defobj

60

GetName

Name
GetName — Get name which identifies object in its context of use.

Description
Get name which identifies object in its context of use.

Protocols adopted by GetName
None

Methods

Phase: Using
• - (const char *)getName

The getName message returns a null-terminated character string that
identifies an object in some context of use. This message is commonly used
for objects that are created once in some fixed context where they are also
assigned a unique name. Constant objects defined as part of a program or
library are examples. This message is intended only for returning a name
associated with an object throughout its lifetime. It does not return any
data that ever changes.

Defobj

61

GetOwner

Name
GetOwner — Get object on which existence of object depends.

Description
Ownership hierarchies arrange themselves in a strict, single-rooted tree. The top-level node of an
ownership hierarchy typically returns nil as its owner. If an object is regarded merely as one part of
another object defined as its owner, then copying or dropping the owner object should copy or drop the
member object as well. Owner and member are neutral terms for a generic relationship sometimes called
parent vs. child, but it is up to a particular object type to define specifically what it means by a getOwner
relationship.

Protocols adopted by GetOwner
None

Methods

Phase: Using
• - getOwner

The getOwner message returns another object which is considered as the
owner of an initial object. What is considered as an owner depends on its
specific object type, but might be a larger object of which the local
object is a part, or an object that has exclusive control over the local
object. The principal constraint established by an ownership structure is
that a given object can have only a single other object as its unambiguous
owner.

Defobj

62

HDF5

Name
HDF5 — HDF5 interface

Description
HDF5 interface

Protocols adopted by HDF5
Create (see page 46)

Drop (see page 54)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setCount: (unsigned)count

• - setCompoundType: compoundType

• - setParent: parent

• - setExtensibleDoubleVector

• - setExtensibleVectorType: (fcall_type_t)type

• - setDatasetFlag: (BOOL)datasetFlag

• - setWriteFlag: (BOOL)writeFlag

Phase: Setting
• - setBaseTypeObject: baseTypeObject

• - setName: (const char *)name

Create-time use is to name the file or group. Setting-time use is to
rename component datasets that don't parent's name.

Phase: Using
• - (void)flush

• - (const char *)getAttribute: (const char *)attributeName

• - (void)iterateAttributes: (int (*) (const char *key, const char

*value))iterateFunc

• - (void)storeAttribute: (const char *)attributeName value: (const char

*)valueString

Defobj

63

• - (void)writeLevels

• - (void)writeRowNames

• - (const char **)readRowNames

• - (void)selectRecord: (unsigned)recordNumber

• - (void)numberRecord: (unsigned)recordNumber

• - (void)nameRecord: (unsigned)recordNumber name: (const char *)recordName

• - (void)shallowStoreObject: obj

• - (void)shallowLoadObject: obj

• - (void)storeComponentTypeName: (const char *)typeName

• - (void)storeTypeName: (const char *)typeName

• - (void)addDoubleToVector: (double)val

• - (void)storeAsDataset: (const char *)name typeName: (const char *)typeName
type: (fcall_type_t)type rank: (unsigned)rank dims: (unsigned *)dims ptr:

(void *)ptr

• - (void)loadDataset: (void *)ptr

• - (BOOL)checkDatasetName: (const char *)datasetName

• - (BOOL)checkName: (const char *)name

• - (void)assignIvar: obj

• - (Class)getClass

• - getCompoundType

• - (const char *)getHDF5Name

• - (unsigned)getCount

• - (fcall_type_t)getDatasetType

• - (size_t)getDatasetDimension: (unsigned)dimNumber

• - (size_t)getDatasetRank

• - (BOOL)getWriteFlag

• - (BOOL)getDatasetFlag

• - (void)iterate: (int (*) (id <HDF5>hdf5Obj))iterateFunc

• - (void)iterate: (int (*) (id <HDF5>hdf5Obj))iterateFunc drop:

(BOOL)dropFlag

Defobj

64

HDF5Archiver

Name
HDF5Archiver — Protocol for creating HDF5 instances of the Archiver

Description
Protocol for creating HDF5 instances of the Archiver Default system path is ~/swarmArchiver.hdf
Default application path is <swarmdatadir>/<appname>/<appname>.hdf or the current directory.

Protocols adopted by HDF5Archiver
Archiver (see page 38)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setPath: (const char *)path

Convenience method to create an HDF5Archiver from a specified path

Defobj

65

HDF5CompoundType

Name
HDF5CompoundType — HDF5 composite type interface

Description
HDF5 composite type interface

Protocols adopted by HDF5CompoundType
Create (see page 46)

Drop (see page 54)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setPrototype: prototype

Phase: Using
• - getPrototype

Defobj

66

LispArchiver

Name
LispArchiver — Protocol for creating Lisp instances of the Archiver

Description
Protocol for creating Lisp instances of the Archiver Default system path is ~/.swarmArchiver.scm.
Default application path is <swarmdatadir>/<appname>/<appname>.scm or the current directory.

Protocols adopted by LispArchiver
Archiver (see page 38)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setPath: (const char *)path

Convenience method to create LispArchiver from a specified path

RETURNABLE

Name
RETURNABLE — Declare that a defined type may be created as a side-effect

Description
Declare that a defined type may be created as a side-effect

Protocols adopted by RETURNABLE
None

Methods
None

Defobj

67

Serialization

Name
Serialization — Object serialization protocol.

Description
Object serialization protocol.

Protocols adopted by Serialization
None

Methods

Phase: Creating
• - hdf5InCreate: (id <HDF5>)hdf5Obj

Process HDF5 object to set create-time parameters.

• - lispInCreate: expr

Process keyword parameters in expression in order to get create-time
parameters.

Phase: Setting
• - hdf5In: (id <HDF5>)hdf5Obj

Load instance variables from an HDF5 object.

• - lispIn: expr

Process an archived Lisp representation of object state from a list of
instance variable name / value pairs.

Phase: Using
• - (void)updateArchiver: (id <Archiver>)archiver

• - (void)hdf5OutDeep: (id <HDF5>)hdf5obj

Output a deep HDF5 representation of object state to a stream.

• - (void)hdf5OutShallow: (id <HDF5>)hdf5obj

Output a shallow HDF5 representation of object state to a stream.

• - (void)lispStoreDoubleArray: (double *)ptr Keyword: (const char *)keyword
Rank: (unsigned)rank Dims: (unsigned *)dims Stream: stream

Lisp save array of doubles, see lispStoreIntegerArray:Keyword:Rank:Dims.

• - (void)lispStoreFloatArray: (float *)ptr Keyword: (const char *)keyword
Rank: (unsigned)rank Dims: (unsigned *)dims Stream: stream

Lisp save array of floats, see lispStoreIntegerArray:Keyword:Rank:Dims.

Defobj

68

• - (void)lispStoreUnsignedLongLongArray: (unsigned long long *)ptr Keyword:
(const char *)keyword Rank: (unsigned)rank Dims: (unsigned *)dims Stream:

stream

Lisp save array of unsigned long long, see
lispStoreIntegerArray:Keyword:Rank:Dims.

• - (void)lispStoreLongLongArray: (long long *)ptr Keyword: (const char
*)keyword Rank: (unsigned)rank Dims: (unsigned *)dims Stream: stream

Lisp save array of long long, see lispStoreIntegerArray:Keyword:Rank:Dims.

• - (void)lispStoreUnsignedLongArray: (unsigned long *)ptr Keyword: (const
char *)keyword Rank: (unsigned)rank Dims: (unsigned *)dims Stream: stream

Lisp save array of unsigned long, see
lispStoreIntegerArray:Keyword:Rank:Dims.

• - (void)lispStoreLongArray: (long *)ptr Keyword: (const char *)keyword
Rank: (unsigned)rank Dims: (unsigned *)dims Stream: stream

Lisp save array of long, see lispStoreIntegerArray:Keyword:Rank:Dims.

• - (void)lispStoreUnsignedArray: (unsigned *)ptr Keyword: (const char
*)keyword Rank: (unsigned)rank Dims: (unsigned *)dims Stream: stream

Lisp save array of unsigned integers, see
lispStoreIntegerArray:Keyword:Rank:Dims.

• - (void)lispStoreShortArray: (short int *)ptr Keyword: (const char
*)keyword Rank: (unsigned)rank Dims: (unsigned *)dims Stream: stream

Lisp save array of short integers, see
lispStoreIntegerArray:Keyword:Rank:Dims.

• - (void)lispStoreCharArray: (char *)ptr Keyword: (const char *)keyword
Rank: (unsigned)rank Dims: (unsigned *)dims Stream: stream

Lisp save array of characters, see
lispStoreIntegerArray:Keyword:Rank:Dims.

• - (void)lispStoreBooleanArray: (BOOL *)ptr Keyword: (const char *)keyword
Rank: (unsigned)rank Dims: (unsigned *)dims Stream: stream

Lisp save array of Booleans, see lispStoreIntegerArray:Keyword:Rank:Dims.

• - (void)lispStoreIntegerArray: (int *)ptr Keyword: (const char *)keyword
Rank: (unsigned)rank Dims: (unsigned *)dims Stream: stream

For customized archiving of dynamically allocated arrays within objects.
To use this method, override the object's lispOutDeep: method as follows.
The array is assumed allocated in one long piece of memory, but it can be
treated in segments to make it two dimensional. The number of rows is
"rank" and the length of the i'th row is dims[i], thus allowing for a
ragged array. In this example, Attribute is a class, culture is a
dynamically allocated array of numDims integers, so rank is 1 and a pointer
to numDims is passed through for the length of that row.

Example -lispStoreIntegerArray:Keyword:Rank:Dims:Stream: #1
- (void)lispOutDeep: stream
{
[stream catStartMakeInstance: "Attribute"];

Defobj

69

[super lispOutVars: stream deep: NO]; //saves all ints, doubles, BOOLs,
and static arrays. Saves the values of all other objects as nil

// Note one can use the previous "lispSaveStream:..." methods to
// customize the choice of variables to be saved.
// Now save an array called "culture", which has 1 row
// and "numDims" columns, onto the stream.
[super lispStoreIntegerArray: culture Keyword: "culture" Rank: 1 Dims:

&numDims Stream: stream];
[stream catEndMakeInstance];

Defobj

70

}

• - (void)lispSaveStream: stream Double: (const char *)aName Value:

(double)val

On the given stream, save a double valued variable called "aName" which
has value "val".

• - (void)lispSaveStream: stream Float: (const char *)aName Value:

(double)val

On the given stream, save a float valued variable called "aName" which has
value "val".

• - (void)lispSaveStream: stream UnsignedLongLong: (const char *)aName Value:

(unsigned long long)val

On the given stream, save an unsigned long long variable called "aName"
which has value "val".

• - (void)lispSaveStream: stream LongLong: (const char *)aName Value: (long

long)val

On the given stream, save a long long variable called "aName" which has
value "val".

• - (void)lispSaveStream: stream UnsignedLong: (const char *)aName Value:

(unsigned long)val

On the given stream, save an unsigned long variable called "aName" which
has value "val".

• - (void)lispSaveStream: stream Long: (const char *)aName Value: (long)val

On the given stream, save a long variables called "aName" which has value
"val".

• - (void)lispSaveStream: stream Unsigned: (const char *)aName Value:

(unsigned)val

On the given stream, save an unsigned integer variable called "aName"
which has value "val".

• - (void)lispSaveStream: stream Integer: (const char *)aName Value: (int)val

On the given stream, save an integer variable called "aName" which has
value "val".

• - (void)lispSaveStream: stream UnsignedShort: (const char *)aName Value:

(unsigned short)val

On the given stream, save an unsigned short integer variable called
"aName" which has value "val".

• - (void)lispSaveStream: stream Short: (const char *)aName Value: (short)val

On the given stream, save a short integer variable called "aName" which
has value "val".

• - (void)lispSaveStream: stream Char: (const char *)aName Value: (char)val

On the given stream, save a character variable called "aName" which has
value "val".

• - (void)lispSaveStream: stream Boolean: (const char *)aName Value: (int)val

Defobj

71

On the given stream, save a Boolean variable called "aName" which has
value "val". Explanation: The Swarm lisp serialization approach assumes
that objects have lispOutDeep: and lispOutShallow: methods which indicate
which variables are supposed to be saved. If an object is subclassed from
SwarmObject, there are default lispOutDeep: and lispOutShallow: methods.
Those methods employ on the method, lispOutVars:deep:, which is the
"default" approach to try to save all variables, either deep or shallow.
Sometimes one needs to selectively list particular instance variables to be
saved.

This is necessary, for example, if one wants to save a Swarm itself,
because the usage of lispOutVars: will result in a variable "activity"
being saved as nil, and so when the saved values are read back in, the
"activity" variable will be erased and nil will appear in its place.

Here is an example of how a subclass called "BFagent" might override
lispOutDeep: to customize the selection of variables to be saved. Note
that the same could be used to override lispOutShallow:.

The key thing to remember is that when one tries to do a deep save on a
high level object, such as a Swarm, then the Swarm libraries will try to
track from top to bottom, finding all collections and objects, and all
objects and collections inside them, and so forth, and each will be told to
execute its lispOutDeep: method. So all objects you want to save need a
lispOutDeep: method, or else the default will try to save all variables.
If you omit some objects or variables from your lispOutDeep: method, then
they will not appear in the saved file, which is what you want if you want
to be sure that pre-existing interited values of variables are not
obliterated by bogus saved values.

Example -lispSaveStream:Boolean:Value: #1
- (void)lispOutDeep: stream
{
[stream catStartMakeInstance: "BFagent"];
[self lispSaveStream: stream Double: "demand" Value: demand];
[self lispSaveStream: stream Double: "profit" Value: profit];
[self lispSaveStream: stream Double: "wealth" Value: wealth];
[self lispSaveStream: stream Double: "position" Value: position];
[self lispSaveStream: stream Double: "cash" Value: cash];
[self lispSaveStream: stream Double: "price" Value: price];
[self lispSaveStream: stream Double: "dividend" Value: dividend];
[self lispSaveStream: stream Integer: "myID" Value: myID];
[stream catEndMakeInstance];

}
An example of such a usage can be found in version 2.4 of the

Defobj

72

Artificial Stock Market (http://ArtStkMkt.sourceforge.net).

• - (void)lispOutVars: stream deep: (BOOL)deepFlag

Output just key/variable pairs, where variables are serialized deep or
shallow per deepFlag.

• - (void)lispOutDeep: stream

Output a deep Lisp representation of object state to a stream.

• - (void)lispOutShallow: stream

Output a shallow Lisp representation of object state to a stream.

SetInitialValue

Name
SetInitialValue — Create using initial value from an existing object.

Description
The SetInitialValue type defines a variety of messages relating to an initial or unmodifiable value
established as part of an object. This message is typically provided when creation of a new object might
be more easily accomplished by copying the value of an existing object rather than establishing a new
value from scratch. As with the copy message, precisely what is considered the value of an existing
object to copy is defined only by the particular object type that supplies these messages.

If an object has a value which can be established at create time, it is often useful (and can also enable
significant optimization) to declare that no further modification will occur to this value during further
use of the object. A restriction against modifying a value is referred to as a "read-only" restriction. This
type supplies messages to declare a read-only restriction along with any initial value. For some object
types, a read-only restriction can also be added or removed after an object has already been created.

Protocols adopted by SetInitialValue
None

Methods

Phase: Creating
• - (void)setInitialValue: initialValue

The setInitialValue: message requires another object as its argument, from
which the value of a newly created object is to be taken. Unlike a copy
message, the object used as the source of the new value need not have the
identical type as the new object to be created. A particular object type
defines the types of initial value objects which it can accept, along with
any special conversion or interpretation it might apply to such a value.

Defobj

73

Symbol

Name
Symbol — Object defined as a distinct global id constant.

Description
A Symbol is an object created with a fixed name. It has no behavior except to get the name with which it
was created. A Symbol is typically used to define unique id values which are assigned to global constant
names. These names, capitalized according to the recommended convention for global object constants,
are used by some libraries as flags or enumerated value codes in arguments or return values of messages.

Ordinarily, a symbol is created with its character string name matching the global id constant to which it
is assigned. These global program constants can then provide a minimal level of self documentation as
objects. Subtypes of Symbol can extend the base of a named, global id constant to establish further
components of a global, constant definition.

A symbol is fully creatable using standard Create messages. A character string name must be supplied
for any new symbol; there is no default. Symbol inherits the getName message, which returns the
symbol name.

Protocols adopted by Symbol
Create (see page 46)

GetName (see page 60)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setName: (const char *)name

create:setName: is a combination message defined as a caller convenience.
See combination messages for a summary of conventions on combination
messages.

Macros
• defsymbol(name)

macro used to create and initialize a symbol

Defobj

74

Warning

Name
Warning — A condition of possible concern to a program developer.

Description
A condition of possible concern to a program developer.

Protocols adopted by Warning
EventType (see page 56)

CREATABLE (see page 44)

Methods

Phase: Using
• - (const char *)getMessageString

Return the message associated with this warning.

• - (void)setMessageString: (const char *)messageString

Associate a message string with this warning.

Macros
• defwarning(name, message)

macro used to create and initialize an Error symbol

Globals
id <Warning> WarningMessage

 message in the source defines warning
id <Warning> ResourceAvailability

 resource from runtime environment not available
id <Warning> LibraryUsage

 invalid usage of library interface
id <Warning> DefaultAssumed

 non-silent use of default
id <Warning> ObsoleteFeature

 using feature which could be removed in future
id <Warning> ObsoleteMessage

 using message which could be removed in future
id <Warning> SaveWarning

Defobj

75

 non-fatal problem saving a resource

Defobj

76

Zone

Name
Zone — Modular unit of storage allocation.

Description
A zone is a source of storage for objects or other allocated data. Whenever a new object is created, a
zone must be identified from which the storage for its instance variables, or other internal data, is
obtained. A program may establish multiple zones to ensure that objects with similar lifetime or storage
needs are allocated together, and in general to optimize allocation and reuse of storage.

Zones also maintain a collection of all objects allocated within the zone. This collection, referred to as
the "population" of a zone, is a set of all objects which have been created but not yet dropped within the
zone. Collections maintained automatically by zones can eliminate a need for other, separately
maintained collections in applications that need to keep track of entire populations of objects.
Collections of allocated objects can provide support for object query, external object storage, and
automatic storage reclamation.

A zone may be used to obtain storage not only for objects, but also for raw storage blocks like those
provided by the C malloc function. All objects and storage blocks allocated in a zone remain local to
that zone. This means that allocation of storage in other zones does not affect the efficiency of storage
allocation within a particular zone. For most zone types, individual allocations may still be freed within
a zone, and total storage of a zone may grow and shrink according to aggregate needs. In addition to
freeing individual allocations, an entire zone may also dropped. Dropping a zone automatically frees all
object allocations made within it, including final drop processing on any allocated objects that need it.
Release of an entire zone can be much faster than individual release of each object within it.

The Zone type is a fully implemented type that provides default storage management support for objects
and other allocated storage. It is also a supertype for other zones that implement alternative policies for
use in specialized situations.

A zone is created using standard create messages just like other objects. This means that a zone must
identify another zone from which it obtains its storage. Storage is typically obtained from this other zone
in large units called pages, which are then managed by the local zone to support internal allocations. The
getZone message of the DefinedObject type returns the zone which provides these base pages.

Since a new zone always requires that an existing zone be identified, no new zones could be created
unless there were some zones that already existed. Two such zones are predefined as part of the defobj
library: globalZone and scratchZone.

Protocols adopted by Zone
Create (see page 46)

Drop (see page 54)

CREATABLE (see page 44)

Defobj

77

Methods

Phase: Creating
• - (void)setPageSize: (size_t)pageSize

PageSize specifies the size of pages within which a zone manages its
internal allocation. Its default is typically a natural page size (perhaps
4K) for the local machine architecture. The default should be overridden
only when tuning storage allocation for very specific situations.
Allocations within a zone are not limited to the page size, since any
requests that exceed the page size are simply passed up to the owner zone
within which the zone was allocated.

Phase: Using
• - (void)describeForEachID: outputCharStream

Generate debug id description for each member of the zone population.

• - (void)describeForEach: outputCharStream

Generate debug description for each member of the zone population.

• - (id <List>)getPopulation

getPopulation returns a collection all objects allocated in a zone using
either allocIVars: or copyIVars: and not yet freed using freeIVars:.
getObjects returns nil if the ObjectCollection option is false. The
collection returned has the type OrderedSet as defined in the collections
library, with the ReadOnly option set true and the IndexSafety option set
to SafeAlways. The members of this collection may change as objects are
allocated and freed, but may not added or removed directly within the
collection.

• - (void)freeBlock: (void *)aBlock blockSize: (size_t)size

freeBlock:blockSize: must be used to free any block previously allocated
by allocBlock:.

• - (void *)allocBlock: (size_t)size

allocBlock: allocates a new storage block similar to alloc:, except that
the size of the block allocated must be passed as an argument when freeing
the block.

• - (void)free: (void *)aBlock

free: releases a block of storage previously allocated using alloc:. The
size of the block is not required as an argument because alloc: has saved
this size as necessary as part of the initial allocation. free: may be used
only to free a block allocated by alloc:, and a block allocated by alloc:
may be freed only by free:.

• - (void *)alloc: (size_t)size

alloc: allocates a new storage block much like the malloc function of the
C library. The storage is aligned according to the most restrictive
requirements for any data type on the local machine architecture. The
storage is not initialized to any known contents.

Defobj

78

• - getComponentZone

Returns a specially qualified version of the zone that automatically
allocates all its objects with the internal component qualification, even
if allocated with allocIVars: or copyIVars:. This qualified zone may be
passed as an argument to a create: or createBegin: message so that it will
create the new object as an internal component object.

• - (void)freeIVarsComponent: anObject

Frees the instance variable storage for an object.

• - copyIVarsComponent: anObject

Like allocateIVarsComponent, except it copies the storage that holds the
instances variables for an object.

• - allocIVarsComponent: (Class)aClass

These messages allocate, copy, and free

This message allocates the storage that holds the instance variables for
an object. It allocates the object as an internal component of the zone
that is not included in the zone population. It is used by classes that
allocate additional objects as part of the implementation of another
object, and that control the mapping of this storage separately from the
zone level objects.

• - (void)freeIVars: anObject

freeIVars: releases storage that was previously allocated to hold the
instance variable structure of an object. The first word of the object
must be a class pointer that correctly describes the size of the structure.
Storage allocated by allocIVars: or copyIVars: may be freed only by
freeIVars:, and freeIVars: may be used only to free storage allocated by
one of these messages.

• - copyIVars: anObject

copyIVars: creates copies an existing instance variable structure into a
new allocation made within the local zone. The existing instance variable
structure may be in any zone, but must contain a class pointer in its first
word that correctly describes the size of the structure.

• - allocIVars: (Class)aClass

allocIVars: allocates the instance variable structure for a new object.
The initial word of this structure is set to class id passed as its
argument. The class also determines the size of the structure allocated.
All remaining contents of this structure are initialized to binary zeroes.

• - (size_t)getPageSize

Defobj

79

General

Name
defobj — Standard objects for GNU Objective C extensions

Description
The defobj library supports the style of object-oriented programming that is used throughout Swarm. It
defines a specific style for using the Objective C language that includes its own standard conventions for
creating objects and for storage allocation, error handling, and debugging support.

Macros
• DSIZE(type)

Conservative approximation of the number of decimal digits for a object of
a given type, not including terminator. signchar + roundup (log
(10)/log(2) = 3.3219).

• FCALL_TYPE_COUNT
• FREEBLOCK(block)

• GSTRDUP(str)

• M(messageName)

Abbreviation for @selector().

• MAKE_CLASS_FUNCTION_NAME
 Name to use for Lisp archiving class-creation function

• MAKE_INSTANCE_FUNCTION_NAME
 Name to use for Lisp archiving object-creation function

• OFREEBLOCK(obj, block)

• OSTRDUP(obj, str)

• PARSE_FUNCTION_NAME
 Name to use for Lisp archive custom-parse function

• SFREEBLOCK(block)

• SSTRDUP(str)

• STRDUP(str)

• ZFREEBLOCK(aZone, block)

• ZSTRDUP(aZone, str)

• __swarm_defobj_h

• globalZone
 A zone for allocating global objects.

• initModule(module)

module initialization macro

Defobj

80

• scratchZone
 A zone for allocating temporary objects.

Functions
• void _obj_formatIDString(char *buffer, id anObject)

Function to generate object id string in standard format (Up to 78
characters of the supplied buffer argument could be filled.)

• void _obj_initModule(void *module)

internal module initialization function

• id defobj_lookup_type(const char *name)

Lookup a defobj type object by name.

• void initDefobj(id <Arguments> arguments)

• id nameToObject(const char *name)

Get an object from textual pointer description.

• Class objc_get_class(const char *name)

Declaration to enable use of @class declaration for message receiver
without compile error.

• void xexec(id anObject, const char *name)

Debug function to perform message on an object.

• void xfexec(id anObject, const char *name)

Debug function to perform message on each member of a collection.

• void xfprint(id anObject)

Print description for each member of a collection on debug output stream.

• void xfprintid(id anObject)

Print id for each member of a collection on debug output stream.

• void xprint(id anObject)

Print description of object on debug output stream.

• void xprintid(id anObject)

Print only the id string for an object on debug output stream.

• void xsetname(id anObject, const char *name)

Set the display name.

• char *zstrdup(id <Zone> aZone, const char *str)

Typedefs
• COMOBJECT void *

• JOBJECT void *

• call_t enum callTypes { ccall, COMcall, JScall, javacall, javastaticcall, objccall }

Defobj

81

• fcall_type_t enum {fcall_type_void = 0, fcall_type_boolean, fcall_type_uchar, fcall_type_schar,
fcall_type_ushort, fcall_type_sshort, fcall_type_uint, fcall_type_sint, fcall_type_ulong,
fcall_type_slong, fcall_type_ulonglong, fcall_type_slonglong, fcall_type_float, fcall_type_double,
fcall_type_long_double, fcall_type_object, fcall_type_class, fcall_type_string, fcall_type_selector,
fcall_type_jobject, fcall_type_jstring, fcall_type_jselector, fcall_type_iid }

• types_t union { id object; SEL selector; Class _class; const char *string; BOOL boolean; char schar;
unsigned char uchar; short sshort; unsigned short ushort; int sint; unsigned int uint; long slong;
unsigned long ulong; long long slonglong; unsigned long long ulonglong; float _float; double
_double; long double _long_double; void *iid; }

• val_t struct { fcall_type_t type; types_t val; }

Globals
id <Arguments> arguments

 The singleton Arguments object.
id <HDF5Archiver> hdf5Archiver

 The singleton HDF5 system Archiver object.
id <LispArchiver> lispArchiver

 The singleton Lisp system Archiver object.
id <HDF5Archiver> hdf5AppArchiver

 The singleton HDF5 application Archiver object.
id <LispArchiver> lispAppArchiver

 The singleton Lisp application Archiver object.
id <Symbol> t_ByteArray

 Predefined type descriptors for allocated blocks.
id <Symbol> t_LeafObject

 Predefined type descriptors for allocated blocks.
id <Symbol> t_PopulationObject

 Predefined type descriptors for allocated blocks.
id <Symbol> LanguageCOM

 Language tags (e.g. for use in FArguments)
id <Symbol> LanguageJS

 Language tags (e.g. for use in FArguments)
id <Symbol> LanguageJava

 Language tags (e.g. for use in FArguments)
id <Symbol> LanguageObjc

 Language tags (e.g. for use in FArguments)
id _obj_globalZone

 internal variable for globalZone macro
id _obj_scratchZone

 internal variable for scratchZone macro
BOOL _obj_debug

Defobj

82

 if true then perform all debug error checking
FILE * _obj_xerror

 output file for error messages
FILE * _obj_xdebug

 output file for debugging messages

Collections Library
Overview

The object types of the collections library establish a general-purpose foundation to maintain object
references or other values as members of structured collections. Customization options consolidate a
wide range of basic collection structures into a few core types (Array, List, Set, Map). These types are
defined strictly by their interface, not their internal implementation. Specialized options, however, give
control and flexibility for efficient, low-level use (such as implementing other libraries).

1. Dependencies
Following are the other header files imported by <collections.h>:

#import <defobj.h>

The collections library follows the Library Interface Conventions (see page 406) of the Defobj Library
(see page 26). It also depends on standard supertypes and classes defined by this library. Initialization of
the collections library automatically initializes the defobj library as well. Since defobj also requires the
collections library, both must always be linked into an application together.

2. Compatibility
No explicit incompatibilites for particular versions of Swarm

3. Usage Guide
This section of documentation is not yet available. In the meantime, see the GridTurtle Test Programs
(see page 404) for the most complete examples of collections library usage. If you can't find an example
there that exercises a message or option that you want to use, chances are it's not implemented.

4. Advanced Usage Guide
Unavailable

5. Subclassing Reference
Until the collections library has been fully implemented, subclassing conventions from collections
implementation classes are still in flux. In general, these classes will be among the most complex uses of
multiple classes selected to implement an independent object type. (See Library Interface Conventions
(see page 406) for a summary of the distinction between types and classes.) New methods are being
developed to simplify subclassing from such implementations. In the meantime, if you need to use to a
collection within the implementation of your own class, just put an instance variable in your class and

put the collection in that, and pass through the messages of the collection you want to have available on
your class to this variable. In many if not most cases, this is better design anyway, because you control
all use of the underlying structure.

6. Interface Design Notes
A collections library is one of the most important foundation services for object-oriented programming.
Most object-oriented systems provide at least the start of a general-purpose collections library. The
GNUSTEP, project, for example, provides the libobject library (currently in alpha test at
(ftp://alpha.prep.ai.mit.edu/)) which includes a collections library along with other services intended to
parallel those of the OpenStep framework developed by Next.

Swarm has implemented its own collection library to meet the specialized needs of its agent simulation
framework.

7. Implementation Notes
Unavailable

Documentation and Implementation Status

The collections library has an almost complete set of Interface Reference documents, and the design of the interface
is almost entirely final. The implementation of the collections library, however, doesn't yet implement many of the
more advanced features of this interface.

Collections library development has concentrated on the specific features needed by the activity library. This library
uses collections for its underlying support of actions to be executed in schedules. The collections library itself is still
being completed for use as a general-purpose library.

The Array and List types have all basic capability fully implemented. Set and Map have basic messages defined, but
currently rely on a crude implementation based on sorted lists. (This implementation is more than adequate for the
usually small and relatively static schedule structures in the activity library, and is the most forgiving when change
does take place within members being traversed.) Much more efficient implementations based on both balanced
trees and hash tables are in the works.

OrderedSet is currently supported only with the low-level option for an internal member slot, and the implemented
messages do not match the ones documented in the Interface Reference. Support for groups of duplicate members is
missing from both Set and Map.

None of the special options for restricted usage modes on any type of collection (e.g., read-only restriction) has been
implemented. Stack and Queue are not implemented, but are nothing more than restricted uses of a List. There is no
support for any member type except id or smaller (other member types will depend on a data type facility to be
supplied by defobj).

Even though incomplete, the portion of capability that is implemented has been exercised very heavily. The
interfaces to Set and Map structures will remain the same even as their underlying implementations improve, so
there is no harm in using them. See the GridTurtle Test Programs (see page 404) for the most complete examples of
collections usage.

The collections library follows the documentation structure suggested by the Defobj Library (see page 26) of the
defobj library. There are placeholders at least for each section of documentation (some of which merely indicate that
the section is not available yet) so that all links should at least link up with something, whether or not there's
anything there.

Throughout the documentation, a parenthesized comment that starts with (.. indicates an editorial comment on the
current status of implementation or documentation.

The documentation priority for all libraries is to complete at least their interface reference documents, so that there is
the equivalent of Unix "man pages" that summarize all basic capability. A second priority is to complete the
complementary "Usage Guide" documents. Unlike the reference documents, the Usage Guide will have a task-
oriented organization, and will lead the initial user through actual code examples in the rough order a typical user is
likely to need them. It will serve the role of a tutorial on each library.

The Usage Guide code examples have not yet been developed. For the time being, a directory of test programs
(GridTurtle Test Programs (see page 404), contained within the documentation release directory) provides code
examples of many of the basic features of the defobj, collections, and activity libraries. These code examples also
help indicate the portions of the libraries which are fully implemented and working, since they are run on each new
release of these libraries.

Revision History
2002-05-14 collections.h mgd

 (Array, List, Map): Adopt Serialization.

2002-01-16 collections.h mgd

 (INDEX{STARTP,ENDP}, REMOVEDP, ARCHIVERDOTP): Cast to void * to avoid warning.
(ARCHIVEREOLP): New macro.

2001-04-12 collections.h mgd

 Remove Index safety info from Index, Array, and List. Remove EndsOnly info from ListIndex.

2001-01-24 collections.h mgd

 (OutputStream): Use const void * for catPointer: argument.

2000-06-23 collections.h mgd

 (Permutation): Declare setLastPermutation:.

2000-05-18 collections.h mgd

 ([Collection copy:]): Protect with #ifndef IDL. ([String compare:]): Remove (since there's no documentation,
anyway).

2000-04-27 collections.h mgd

 ([Index -compare:]): Protect with #ifndef IDL. ([PermutedIndex +createBegin:, -createEnd, -next, -prev, -findNext,
-findPrev, -get, -getLoc, -setLoc:, getOffset, -setOffset:]): Remove. ([ListShuffler -createEnd]): Remove.
([Permutation +createBegin:]): Remove.

2000-03-28 mgd

 Swarmdocs 2.1.1 frozen.

2000-02-29 mgd

 Swarmdocs 2.1 frozen.

2000-02-15 collections.h mgd

 (_Set): Remove bogus documentation about return value of Set's add:. Thanks to Michael Stillwell.

2000-02-10 collections.h mgd

 (Permutation): Remove -generatePermuation.

1999-09-07 collections.h alex

 (Collection): Make -begin:, -beginPermuted: conform to Index and PermutedIndex protocol, respectively. (Index,
PermutedIndex, MapIndex, ListIndex): Make RETURNABLE. Reformatting to avoid forward declarations,
throughout.

1999-08-22 collections.h mgd

 (ArchiverKeyword, ArchiverArray, ArchiverValue, ArchvierPair, ArchiverList, PermutationItem): Change from
CREATABLE to RETURNABLE.

1999-08-22 collections.h mgd

 Add objects-conforming-to-Zone argument types.

1999-08-01 collections.h alex

 (ForEachKey): New protocol. (KeyedCollection): Adopt it.

1999-07-24 collections.h mgd

 (_Set): Split out common Set features into subprotocol. (Set, OrderedSet): Adopt it.

1999-07-03 collections.h mgd

 (InputStream): Declare -setLong: and -getLong.

1999-06-30 collections.h mgd

 (OutputStream), OutputStream.[hm]: Add long long output methods.

1999-06-22 collections.h mgd

 Reflect these changes.

1999-06-08 collections.h alex

 (ArchiverPair): Add -{set,get}ConsFormatFlag method to protocol.

1999-06-08 collections.h alex

 (ArchiverList): Add protocol, conform to List, CREATABLE. (OutputStream): Remove -catExpr: method. Add -
cat{Short,UnsignedShort,Long,UnsignedLong}: methods.

1999-06-05 collections.h alex

 (OutputStream): [OutputStream_c -cat{Expr, Double, Float, Int, Unsigned}:] Add and document new methods.
(Archiver{Keyword,Value,Array,Pair): Add new methods to protocol.

1999-06-04 collections.h mgd

 ([Set add:]): Remove remark about DupOption (moved to design document). ([Map at:replace:]): Remove remark
about potential multiple duplicate keys.

1999-05-29 collections.h mgd

 Include externvar.h.

1999-05-28 collections.h mgd

 Use `externvar' for external variable declarations.

1999-05-24 collections.h alex

 (Index): -getLoc, -setLoc: Make these methods accept and return (id <Symbol>). (PermutedIndex): Likewise.

1999-05-24 collections.h alex

 (Map): Make protocol comply with CompareFunction. Remove redundant declaration of -removeKey: (already
defined in KeyedCollection protocol). (KeyedCollection): Remove compliance with CompareFunction. (Set): Re-
enable compliance with KeyedCollection. (InputStream): Add docs on support for Lisp comments.

1999-01-15 collections.h mgd

 (String): Remove setLiteralFlag: and getLiteralFlag.

1999-01-12 collections.h vjojic

 (PermutedIndex): Declare -reshuffle.

1999-01-07 collectionsmeta.sgml alex

 (End): Fixed missing end comment.

1999-01-06 collections.h alex

 (PermutationItem): Add phase tags and documentation strings.

1999-01-06 collections.h mgd

 (PermutationItem): New protocol. (PermutedIndex): Remove no-update qualification.

1998-12-28 collections.h mgd

 Change all count arguments to unsigned. (PermutedIndex): Remove generatePermutation. (ArchiverKeyword,
ArchiverArray, ArchiverValue, ArchiverPair): Add protocol summary and description strings.

1998-12-26 collections.h mgd

 (Collection): Declare -beginPermuted:. (PermutedIndex): Declare generatePermutation.

1998-12-22 collections.h vjojic

 Update descriptions of Permutation and PermutedIndex.

1998-12-17 collections.h mgd

 (Index): Don't adopt Copy protocol. (KeyedCollection): Remove -createIndex:setMember: and -createIndex:at:.
(ListShuffler): Remove +create:withUniformRandom:. Don't adopt CREATABLE or Create.

1998-12-14 collections.h mgd

 (ListShuffler): Adopt Create, Drop, and CREATABLE.

1998-12-11 collections.h vjojic

 (ListShuffler): ListShuffler protocol moved from simtools to collections

1998-12-01 collections.h mgd

 (Index): Change example to avoid processing the End location.

1998-11-18 collections.h mgd

 (List): The methods here aren't create-time; mark as USING phase.

1998-11-17 collections.h mgd

 (List, Map): Adopt Serialization protocol. (ArchiverValue): Add setBoolean: and getBoolean.

1998-11-16 collections.h mgd

 Add corresponding protocols.

1998-11-11 collections.h mgd

 Remove creating -setDefaultMember:; there is already a setting method.

1998-11-02 collections.h mgd

 (Collection): Note that copies are shallow.

1998-10-10 collections.h mgd

 (Sorted): Moved to design document.

1998-09-08 collections.h mgd

 (INDEXSTARTP, INDEXENDP, REMOVEDP, ARCHIVERLITERALP): New macros.

1998-07-22 collections.h mgd

 Replace @deftype with @protocol throughout.

1998-07-16 collections.h mgd

 Remove Stack and Queue (now in design document).

1998-07-09 collections.h mgd

 (Map): Remove mention of DupOption.

1998-07-08 collections.h alex

 (KeyedCollection): Removed to design document -getCountAtKey:, -containsKey: methods, all are unimplemented.
Removed comments for -{get,set}IndexFromMember: (KeyCollectionsIndex): Removed to design document
commented-out -setMember method. (Map): Removed to design document -setKeyType:, setKeySize: methods,
unimplemented.

1998-06-17 Makefile.am mgd

 Include from refbook/ instead of src/.

1998-06-15 Makefile.am mgd

 (MODULE): New variable. Include Makefile.rules from src. Remove everything else.

1998-06-14 collections.h mgd

 Remove MemberType; don't adopt it in Collection. Remove IndexSafety. Remove mention of MemberType in
Drop. Remove EndsOnly; don't adopt it in List. Remove DupOption, BucketFunction, PartiallyOrdered,
PartialOrderContext, and PartialOrderRelations; don't adopt in KeyedCollection. Remove mention of duplicate key,
partial ordering, and index safety from KeyedCollection. Remove disabled -setIndexFromKey:, -getIndexFromKey,
-getKeyAllocSize, -at:insert:setIndex:, -insertGroup, -removeKey:getKey:, -replaceKey:, -createIndex:setKey:, -
createIndex:setMember:.

1998-06-12 collections00.sgml, collectionscont.sgml, collectionsmeta.sgml mgd

Update IDs to SWARM.module.SGML.type.

1998-06-06 collections.ent mgd

 Use public identifiers.

1998-06-05 Makefile.am mgd

 (swarm_ChangeLog): Add.

1998-06-05 collections.h alex

 (LiteralString): Made an extern id <String>, rather than @class variable. Added doc tag. (DupOption): Put space
between global variable tag and @end directive - causing problems for make-h2x script.

1998-06-03 collections.h mgd

 Updated documentation tags. (BucketFunction): -getBucketFunction now returns bucket_t. (CompareFunction): -
getCompareFunction now returns compare_t.

1998-06-01 collections.h alex

 (Collection): Added method -setIndexFromMemberLoc: to protocol. (Index): Added doc string (//G) to Symbol and
Error global variables - made these inside the @end protocol declaration for Index. (KeyedCollection): Added
method -createIndex:fromMember: to protocol.

1998-06-01 collections.h mgd

 Make LiteralString a @class.

1998-05-23 Makefile.am mgd

 New file.

1998-05-23 collections.ent.in mgd

 New file:

1998-05-23 collections.ent mgd

 Removed.

1998-05-22 mgd

 Begin revision log.

1998-05-06 collections.h mgd

 (IndexSafety, Offsets, ForEach, DefaultMember, MemberBlock, Array, EndsOnly, DupOption, Sorted,
CompareFunction, BucketFunction, PartiallyOrdered, PartialOrderContext, MapIndex, InputStream): Add //S.

1998-05-04 collections.h mgd

 Remove NextPrev from Index protocol. Tweak comments for the sake of documentation processing.

1998-04-30 collections.h mgd

 Augment the Index documentation. Move the existing Index info to the Collections protocol, as it is a bit more
general.

1998-04-28 collections.h mgd

 Add documentation tags.

1998-04-28 collections.h mgd

 New protocols: MemberType, IndexSafety, Offsets, ForEach. (Collection): Include them. New protocols:
DefaultMember, MemberBlock. (Array): Include them. New protocol: EndsOnly. (List): Include it. New protocols:
DupOption, Sorted, CompareFunction, BucketFunction, PartiallyOrdered, PartialOrderContext,
PartialOrderRelations. (KeyedCollection): Include them.

1998-04-11 collections.h mgd

 Make archiver symbols extern, not common.

1997-12-04 collections.h mgd

 (OutputStream, String): Constify string arguments.

1997-11-29 collections.h mgd

 Add @deftype for InputStream, and declare symbols that getExpr can return.

1997-11-29 collections.h mgd

 Declare [gs]etLiteralFlag methods.

1997-11-29 collections.h mgd

 Append <Collection> to KeyedCollection deftype.

92

ArchiverArray

Name
ArchiverArray — Array encapsulation for serialization.

Description
Array encapsulation for serialization.

Protocols adopted by ArchiverArray
Create (see page 46)

Drop (see page 54)

RETURNABLE (see page 66)

Methods

Phase: Creating
• - setArray: array

Phase: Using
• - (void)drop

• - (void)lispOutDeep: (id <OutputStream>)stream

• - (void)lispOutShallow: (id <OutputStream>)stream

• - convertToType: (char)destType dest: (void *)ptr

• - (fcall_type_t)getArrayType

• - (unsigned)getElementCount

• - (size_t)getElementSize

• - (unsigned *)getDims

• - (unsigned)getRank

• - (void *)getData

Collections

93

ArchiverKeyword

Name
ArchiverKeyword — Keyword encapsulation for serialization.

Description
Keyword encapsulation for serialization.

Protocols adopted by ArchiverKeyword
Create (see page 46)

Drop (see page 54)

RETURNABLE (see page 66)

Methods

Phase: Creating
• - setKeywordName: (const char *)name

Phase: Using
• - (void)lispOutDeep: (id <OutputStream>)stream

• - (void)lispOutShallow: (id <OutputStream>)stream

• - (const char *)getKeywordName

Collections

94

ArchiverList

Name
ArchiverList — Archiver list encapsulation for serialization.

Description
Archiver list encapsulation for serialization.

Protocols adopted by ArchiverList
List (see page 116)

RETURNABLE (see page 66)

Methods

Phase: Using
• - (void)lispOutDeep: (id <OutputStream>)stream

• - (void)lispOutShallow: (id <OutputStream>)stream

Collections

95

ArchiverPair

Name
ArchiverPair — List pair encapsulation for serialization.

Description
List pair encapsulation for serialization.

Protocols adopted by ArchiverPair
Create (see page 46)

Drop (see page 54)

RETURNABLE (see page 66)

Methods

Phase: Creating
• - setConsFormatFlag: (BOOL)theConsFormatFlag

• - setCdr: cdr

• - setCar: car

Phase: Using
• - (void)lispOutDeep: (id <OutputStream>)stream

• - (void)lispOutShallow: (id <OutputStream>)stream

• - (BOOL)getConsFormatFlag

• - getCdr

• - getCar

Collections

96

ArchiverQuoted

Name
ArchiverQuoted — Archiver serialization object for (quote x) or 'x

Description
Archiver serialization object for (quote x) or 'x

Protocols adopted by ArchiverQuoted
RETURNABLE (see page 66)

Methods

Phase: Creating
• - setQuotedObject: value

Phase: Using
• - (void)lispOutDeep: (id <OutputStream>)stream

• - getQuotedObject

Collections

97

ArchiverValue

Name
ArchiverValue — Value encapsulation for serialization.

Description
Value encapsulation for serialization.

Protocols adopted by ArchiverValue
Create (see page 46)

Drop (see page 54)

RETURNABLE (see page 66)

Methods

Phase: Creating
• - setNil

• - setClass: (Class)class

• - setBoolean: (BOOL)val

• - setChar: (char)val

• - setLongLong: (long long)val

• - setFloat: (float)val

• - setLongDouble: (long double)val

• - setDouble: (double)val

Phase: Using
• - (void)drop

• - (void)lispOutDeep: (id <OutputStream>)stream

• - (void)lispOutShallow: (id <OutputStream>)stream

• - (Class)getClass

• - getObject

• - (BOOL)getBoolean

• - (char)getChar

• - (unsigned)getUnsigned

• - (int)getInteger

• - (long long)getLongLong

Collections

98

• - (float)getFloat

• - (long double)getLongDouble

• - (double)getDouble

• - (fcall_type_t)getValueType

Collections

99

Array

Name
Array — Collection supporting access only by relative position.

Description
An array is a collection of members that are all created as members of the collection at the same time.
Existing member values may be replaced with new values, but the members themselves are fixed at
constant offsets within the collection. The fixed structure of an array permits very fast access to
members by integer offset positions, since the location of each member may be directly calculated.

The Array type is one of the simplest collection types in the collections library, and the closest to a data
structure directly supported in C. Unlike C arrays, the group of members belonging to the array is not
necessarily fixed for the lifetime of the array, but may be dynamically resized to contain a different
number of members. When an array is dynamically resized, existing member values are preserved as
much as possible.

The Array type adds few messages to the generic messages inherited from Collection. This type is
provided partly so that a fixed-structure array can be accessed with the same uniform set of basic
messages as any other kind of object collection. It also handles all required memory allocation within
the collection. As an option, however, the Array type can be used to wrap an existing C array for
external access as an object collection. It can also provide access to an internal C array for direct
manipulation using C expressions. These forms of low-level access support hybrid modes of use in
which advantages of both low-level manipulation and external object access can be combined.

The Array type is directly creatable, and supports all standard messages of Collection except removal of
individual members. The messages based on an integer offset, either on the collection (atOffset:,
atOffset:put:), or an index (setOffset:) all execute in fast constant time. Members of an array are fully
ordered according to these integer offsets. Sequential access to members through its members is also
fully supported. The Array type disables the remove message inherited from Collection; the message is
defined, but any attempt to remove a member will raise an error that the operation is not supported.

The default value of the ReplaceOnly option is true, and cannot be overridden.

The type of index returned by begin: on an array is simply Index. There is no special index type for
Array because there are no additional messages beyond those already defined by Index.

All the Array create-time options can also be set after the array is already created, subject to restrictions
noted below.

Protocols adopted by Array
Collection (see page 103)

DefaultMember (see page 105)

MemberBlock (see page 122)

Serialization (see page 67)

Collections

100

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setCount: (unsigned)count

Phase: Setting
• - setCount: (unsigned)count

The Count option sets the number of members which belong to the
collection. Any non-negative value including zero is valid. If the array
already exists, the any existing members up to the new count will preserve
their existing values. If the new count is greater than the existing
count, or a new array is being created, all members will be assigned an
initial default value of either nil, or a value previously specified for
DefaultMember.

Collections

101

Collection

Name
Collection — A generic collection interface.

Description
A collection is a grouping of object references or other data values which are assigned explicitly as
members of the collection. Depending on the subtype, collection members may also be maintained in
various associations with each other, such as an ordering of members or an association of members with
identifying key values. Major Collection subtypes include Array, List, Set and Map. The Collection
supertype establishes common conventions (and associated messages) supported by all types of
collections.

All collections support traversal over their members using a separate object called an Index. All
collections also follow common rules regarding the types of data values which may be added as
members. The next two subsections summarize these basic features of all collections.

An index is a special type of object that references a current position in an enumeration sequence over a
collection. An enumeration sequence contains every member of a collection exactly once. Every
collection defines an associated type of object for its index. The index type of a collection defines
additional ways in which the members of a collection may be processed beyond any messages available
directly on the collection. Often the operations of an index provide the most basic and flexible means for
manipulating individual members of a collection.

An index object into a collection may be created at any time. An index is the basic means to traverse
through all members of a collection. Multiple indexes on the same collection may all exist at the same
time and may reference the same or different positions. Depending on the collection type, it may be
possible to modify a collection through its indexes.

Once an index is created, the sequence of members in its enumeration sequence is guaranteed to remain
the same, provided that no new members are added to the underlying collection, or existing members
removed. If a member is located once at a particular position, it is guaranteed to remain at that position
as long as the index itself remains.

Many collection types define an explicit ordering over their members. For such collections, the sequence
of members referred to by an index will always be consistent with this ordering. An explicit, total
ordering also guarantees that all indexes of the same collection have the same member sequence.

If no such ordering is defined, however, some particular sequence of all the collection still becomes
associated with each created index. All collection members are guaranteed to be contained somewhere
in the enumeration sequence for any particular index, but two indexes on the same collection are not
guaranteed to have the same sequence.

The Index type corresponds to the iterator types defined as part of many other object-oriented libraries.
The name Index is shorter and emphasizes the more abstract and multi-function role of these basic
support objects for any collection. For more background on design of indexes and iterators, see the
Interface Design Notes for the collections library.

Protocols adopted by Collection

Collections

102

Create (see page 46)

SetInitialValue (see page 72)

Copy (see page 45)

Drop (see page 54)

Offsets (see page 123)

ForEach (see page 106)

Methods

Phase: Creating
• - (void)setIndexFromMemberLoc: (int)byteOffset

• - (void)setReplaceOnly: (BOOL)replaceOnly

This boolean-valued option restricts valid usage of a collection by
excluding all operations which add or remove members. For some collection
subtypes, a replace-only restriction can obtain many of the same
performance advantages as a read-only collection, but without disabling
replace operations as well. Just like the ReadOnly option, the ReplaceOnly
option may be reset after a collection is created, provided it was not
originally set to true.

Phase: Using
• - (id <PermutedIndex>)beginPermuted: (id <Zone>)aZone

• - (id <Index>)begin: (id <Zone>)aZone

The begin: message is the standard method for creating a new index for
traversing the elements of a collection. All further information about
indexes is documented under the Index type.

• - (BOOL)allSameClass

Returns YES if all members are of the same class.

• - (void)deleteAll

Like removeAll:, but drops the member(s) as well.

• - (void)removeAll

The removeAll message removes all existing members of a collection and
sets its member count to zero. The collection then remains valid for
further members to be added. This message has no effect on the objects
which might be referenced by any removed member values. If resources
consumed by these objects also need to be released, such release operations
(such as drop messages) can be performed prior to removing the member
values.

• - remove: aMember

Collections

103

The remove: message removes the first member in the collection with a
value matching the value passed as its argument. If there is no such
member, a nil value is returned. As with the contains: message, the speed
of this operation may vary from very low to linear in the number of
members, depending on the collection subtype.

• - (BOOL)contains: aMember

The contains: message returns true if the collection contains any member
value which matches the value passed as its argument. Depending on the
collection subtype, this may require traversing sequentially through all
members of the collection until a matching member is found. For other
subtypes, some form of direct indexing from the member value may be
supported. The message is supported regardless of its speed.

• - (unsigned)getCount

getCount returns the integer number of members currently contained in the
collection. All collections maintain their count internally so that no
traversal of collection members is required simply to return this value.

• - (BOOL)getReplaceOnly

• - copy: (id <Zone>)aZone

Note: copies are shallow; members inside the collection are not copied.

Collections

104

CompareFunction

Name
CompareFunction — Interface for defining the compare function to use when comparing to
members in a collection.

Description
The function given will be called whenever one key value needs to be compared with another. Multiple
calls to the function typically occur whenever members are added or removed from the collection, until
the correct member for insertion or removal is determined.

The compare function is called repeatedly by the collection to compare two key values. The function
should return zero if the key values are equal, -1 for the first key argument less than the second, and +1
for the first greater than the second. If a keyed collection is not sorted, either -1 or +1 may be returned
for unequal keys, regardless of whether one might be taken as greater or less than the other.

Protocols adopted by CompareFunction
None

Methods

Phase: Creating
• - setCompareUnsignedIntegers

• - setCompareIntegers

• - setCompareIDs

• - setCompareCStrings

• - setCompareFunction: (compare_t)aFunction

Phase: Using
• - (compare_t)getCompareFunction

Typedefs
• compare_t int (*) (id, id)

Collections

105

DefaultMember

Name
DefaultMember — Methods for setting and getting the default member in a collection.

Description
When this option is set, the initial value of all new members will be set to the member value given
(otherwise the default is nil). This option gives a convenient way to distinguish members which have
never been set from any other valid member value, which could include nil. This option may be reset
after array creation only if some setting for the option was given at create time. (The initial, explicitly set
value can still be the default nil, but a value must be set explicitly for the option to be resettable later).
The get message for this option always retrieves the current setting, but this value has no effect except
when the count of an array is increased, so that new members need to be initialized.

Protocols adopted by DefaultMember
None

Methods

Phase: Setting
• - (void)setDefaultMember: memberValue

Phase: Using
• - getDefaultMember

Collections

106

ForEach

Name
ForEach — Messages for performing the same message on objects in a collection.

Description
The forEach messages supply a convenient shorthand for repeatedly performing the same message on all
objects contained as members in a collection. The message to be sent is identified by the argument
aSelector. This selector must define the same number of arguments as contained in any remaining
argument slots of the forEach message. The argument types of the message to be sent must be either the
id type, or some other type that will fit in the same number of bits as the id type. By global portability
assumptions, the argument type could be as large as an int (signed or unsigned), but not necessarily as
large as a long. To use the message, any non-id value must be cast to the id type as part of the call
expression.

The forEach: messages are implemented by a simple loop through all members of a collection, using an
internal, temporary index. If any operation more complex than a simple message send is required, this
operation should just be coded directly using a loop that traverses its own index.

Protocols adopted by ForEach
None

Methods

Phase: Using
• - (void)describeForEachID: outputCharStream

• - (void)describeForEach: outputCharStream

• - (void)forEach: (SEL)aSelector

• - (void)forEach: (SEL)aSelector : arg1

• - (void)forEach: (SEL)aSelector : arg1 : arg2

• - (void)forEach: (SEL)aSelector : arg1 : arg2 : arg3

Collections

107

ForEachKey

Name
ForEachKey — Exactly the same as the ForEach protocol, but only for KeyedCollections.

Description
Works identically to the ForEach protocol, but loops through the keys in a KeyedCollection, rather than
the members.

Protocols adopted by ForEachKey
None

Methods

Phase: Using
• - (void)forEachKey: (SEL)aSelector

• - (void)forEachKey: (SEL)aSelector : arg1

• - (void)forEachKey: (SEL)aSelector : arg1 : arg2

• - (void)forEachKey: (SEL)aSelector : arg1 : arg2 : arg3

Collections

108

Index

Name
Index — Reference into the enumeration sequence for a collection.

Description
An index is a reference into an enumeration sequence of a collection. Such an enumeration sequence
contains all members of the collection in some order. This order will always be consistent with ordering
of members in the collection, assuming there is such an ordering. Otherwise, the sequence will still
contain all members in some order that remains fixed provided that new members are not added or
removed from the collection.

An index is created by a begin: or createIndex: message against a collection. Each major collection type
has its own corresponding index type, which supports specialized types of processing against the valid
contents of that kind of collection. Once created, an index is a separate object from the collection itself,
but it remains valid only so long as the collection itself still exists. Multiple indexes may exist at the
same time against the same collection, and each index maintains its own position within an enumeration
sequence for the collection.

Many indexes provde the ability modify the collection they refer to, in addition to simply traversing
members. An index often provides the complete means for maintaining the contents of a collection,
more than could otherwise be performed on the collection itself. The position or other status of the index
is automatically updated to reflect any changes made through the index itself.

If changes to a collection are made while other indexes exist, those other indexes could be affected in
potentially catastrophic ways.

Each index is a stand-alone object allocated within a zone passed as an argument in the message that
created it. This zone need not match the zone of a collection. It is common for index lifetimes to be
shorter than their collection. For example, indexes can be created in a temporary scratch zone for use
only within a local loop.

Because messages to a collection are the only valid way to create an index, create messages and create-
time options are not used with index types. All valid processing on an index is determined by
characteristics of the collection from which it is created. Index types are typically named after the type
of collection they are created from, and serve principally to define the specific messages valid for an
index on that type of collection.

Index objects support the universal messages of the top-level DefinedObject supertype, along with the
standard drop: and getZone messages. Even though they cannot be created except from a collection, new
index objects can be created from an existing index using the standard copy: message. Each copy refers
to the same collection as the initial index, and starts at the same position in its enumeration sequence. In
all other respects, however, the new copy is an independent index that maintains its own position under
any further processing.

Protocols adopted by Index
DefinedObject (see page 52)

Collections

109

Drop (see page 54)

RETURNABLE (see page 66)

Methods

Phase: Using
• - (int)compare: anIndex

The compare: message compares the current location of one index with the
current location of another index passed as its argument. If the two
indexes have the same location, compare: returns zero. Otherwise, compare:
returns +1 or -1 according to whether the argument index precedes or
follows the receiver index in the enumeration sequence of the collection.
If either of the two indexes has an unknown offset, and the location of the
other index is anything other than Start or End or an immediately adjacent
member, compare: returns the UnknownOffset integer value.

• - setOffset: (unsigned)offset

Using the setOffset: message, an index may be positioned directly to a
member using the offset of the member within its enumeration sequence. The
speed of this operation depends on the specific type of the collection,
just as noted for the atOffset: message on Collection. In the worst case,
this operation is linear in the magnitude of the offset.

• - (int)getOffset

Provided there is no major computational cost, an index also maintains the
integer offset of its current member within the enumeration sequence of the
collection. These integer offset values have the same definition as in the
atOffset: messages of Collection. The getOffset message returns this
current offset value. If the index is current positioned at the Start or
End location, getOffset returns -1. If the index is positioned at a
Between location, getOffset returns the offset of the immediately preceding
member. If the offset is not currently available from the index, getOffset
returns the special value UnknownOffset. This value is defined by a macro
as the maximally negative value of a 32-bit, 2's-complement integer.

An offset is always available from an index if its current position has
been reached by repeated operations from an initial Start or End position,
and there has been no other modification to the underlying collection.
Some forms of direct member access operations supported by some index
types, however, may result in an integer offset not being available. These
restrictions are noted with the individual index type.

• - (void)setLoc: (id <Symbol>)locSymbol

The setLoc: message may be used to reset the current location of an index
to either Start or End. It may be used to reprocess a collection using an
existing index after some other location has already been reached. It may
also be used to position an index at the end of all members prior to
traversing members in reverse order using prev.

Collections

110

Besides Start and End, setLoc: accepts the special argument values of
BetweenAfter and BetweenBefore, which are also defined symbols. These
argument values are only valid if the index is positioned at a current
member. They reposition the index to the special location between the
current member and its immediately following or preceding member.

• - (id <Symbol>)getLoc

The getLoc message returns a symbol constant which indicates the type of
location at which an index is currently positioned. This index location
symbol has one of the following values: Start, End,

and Member.

The Start symbol indicates the special position preceding all members in
the enumeration sequence for the collection. This is the location at which
an index is positioned when it is first created. The End symbol indicates
the special position following all members in the collection. This is the
location at which an index is positioned just after a next message has
returned nil, as a result of moving beyond the last member. The Member
symbol indicates that the index is positioned at some current member in the
enumeration sequence of a collection.

The getLoc message is needed to traverse a collection which could contain
nil values for its members. Without getLoc, there would be no way to
distinguish a nil value returned by next as either a valid member value or
the special value returned at the end of members. With getLoc, a loop that
traverses a collection can test specifically for the end (or start) of
members.

Example -getLoc #1
Following is a simple loop which illustrates such usage:
{

id <Index> index = [aCollection begin: aZone];
id member;

for (member = [index next]; [index getLoc] == Member; member = [index
next])

{
// do something with member ...
}

[index drop];

Collections

111

}

• - remove

The remove message removes the member at the current location of an index,
and returns the member value removed. The index position is set to a
special position between the members which previously preceded and followed
the removed member. If there is no preceding or following member, the
index is set to the special location before the start or after the end of
all members. After a current member is removed, there is no member at the
current index location, but a subsequent next or prev message will continue
with the same member that would have been accessed had the current member
not been removed. An InvalidIndexLoc error is raised if the index is not
positioned at a current member.

• - put: anObject

The put: message replaces the member value at the current index position
with its argument. An InvalidIndexLoc error is raised if the index is not
positioned at a current member.

• - get

get returns the member value at which the index is currently positioned,
or nil if the index is not positioned at a member.

The get message provides an alternate way to obtain the current member
value in a loop that traverses a collection; its return value is the same
as next or prev would return when first positioning to a new member.

• - findPrev: anObject

findPrev: repeatedly performs prev until the member value of the index
matches the argument. nil is returned if the index reaches the end of
valid members without matching the argument.

• - findNext: anObject

findNext: repeatedly performs next until the member value of the index
matches the argument. nil is returned if the index reaches the end of
valid members without matching the argument.

• - prev

The prev message works similarly, but positions to a valid member
preceding the current position, or to a special position preceding all
valid members.

• - next

The next message positions the index to the next valid member after its
current position, or to a special position after the end of all valid
members. In addition to repositioning the index, both messages return the
new member value to which they are positioned, or nil if there is no such
member.

• - getCollection

getCollection returns the collection referred to by an index. This
collection never changes during the lifetime of the index.

Collections

112

Macros
• INDEXENDP(obj)

Predicate to test if index is at the end.

• INDEXSTARTP(obj)

Predicate to test if index is at the start.

• REMOVEDP(obj)

Predicate to test if item at index has been removed.

• UndefinedOffset

Globals
id <Symbol> Start

 values for index location
id <Symbol> End

 values for index location
id <Symbol> Between

 values for index location
id <Symbol> Removed

 values for index location
id <Symbol> Member

 values for index location
id <Error> OffsetOutOfRange

 error types for collections
id <Error> NoMembers

 error types for collections
id <Error> AlreadyAtEnd

 error types for collections
id <Error> AlreadyAtStart

 error types for collections
id <Error> InvalidIndexLoc

 error types for collections
id <Error> InvalidLocSymbol

 error types for collections

Collections

113

InputStream

Name
InputStream — Stream of input data.

Description
This type reads Lisp-like expressions into lists. Supports Lisp comments: semi-colons `;'

Protocols adopted by InputStream
Create (see page 46)

Drop (see page 54)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setFileStream: (FILE *)fileStream

• - setExpr: expr

• + create: (id <Zone>)aZone setExpr: expr

• + create: (id <Zone>)aZone setFileStream: (FILE *)file

Phase: Using
• - getExpr

• - (FILE *)getFileStream

Collections

114

KeyedCollection

Name
KeyedCollection — Member identity definition shared by Set and Map types.

Description
A keyed collection is a collection in which each member can be compared with some other value that
identifies the member. This value is referred to as the member key. The key value may be determined
either by the member value itself, which defines a Set, or by external association with the member when
the member is first added, which defines a Map.

The KeyedCollection type inherits all standard behavior of Collection. The KeyedCollection type is not
itself creatable; it only serves as a common supertype for Set and Map collection types.

The keyed collection type establishes the common behavior shared by both Set and Map. Standard
options are provided to declare ordering of members in the collection.

Protocols adopted by KeyedCollection
Collection (see page 103)

ForEachKey (see page 107)

Methods

Phase: Using
• - (BOOL)containsKey: aKey

The containsKey: message returns true if the key value passed as its
argument is contained in the collection, and false otherwise.

• - removeKey: aKey

The removeKey: message removes a member matching a key value from the
collection, and returns the member just removed. It returns nil if there
is no key value in the collection which matches. If more than one entry
was present for the key value, it removes and returns the first member in
the internal collection created for duplicate members.

• - at: aKey

The at: message returns the existing member of the collection which
matches the key value passed as its argument, or nil if there is no key
value in the collection which matches. If duplicate entries for this key
exist, the entire collection of duplicate members created for the key value
is returned instead.

• - createIndex: (id <Zone>)aZone fromMember: anObject

Collections

115

KeyedCollectionIndex

Name
KeyedCollectionIndex — Index behavior shared by Set and Map types.

Description
An index to a keyed collection traverses all members of the collection, regardless of whether these
members belong to collections of members entered under duplicate key values. Internally, however, an
index keeps track of any specific subcollection it is currently processing.

Protocols adopted by KeyedCollectionIndex
Index (see page 108)

Methods
None

Collections

116

List

Name
List — Collection of members in an externally assigned linear sequence.

Description
A list is a collection of members that are all maintained at some externally assigned position in a linear
sequence of all members. The sequence is established by the position at which members are added:
members can be added at the start of list, at the end, or at any point in the middle.

A list is also one of the most dynamic of basic collections, in that the cost of adding and removing
members is very low. Members can be removed from any position just as easily as they can be added. A
list automatically grows and shrinks to reflect the number of members at any one time, and there is no
fixed capacity which limits the size to which a list may grow.

The List type is supports all messages of Collection. If created with default options, it provides no
special speedup of accesses by integer offset.

Protocols adopted by List
Collection (see page 103)

Serialization (see page 67)

CREATABLE (see page 44)

Methods

Phase: Using
• - (id <ListIndex>)listBegin: (id <Zone>)aZone

Returns a ListIndex, the special index for the List type

• - removeLast

Removes the last member from the list and returns it.

• - removeFirst

Removes the first member from the list and returns it.

• - (void)addLast: anObject

The addLast: message adds a new member to the end of the list.

• - (void)addFirst: anObject

The addFirst: message adds a new member to the front of the list.

Collections

117

ListIndex

Name
ListIndex — Index with insertion capability at any point in list.

Description
The addAfter: and addBefore: messages add members at a particular point in the sequence of members
maintained by a list. The current location of an index determines the point at which a new member will
be added. The addAfter: message adds a member at the list position immediately following the current
index location. addBefore: adds a member to the immediately preceding location. Neither message
changes the current location of the index, except that an index can change from a Start or End location to
a location of Between.

Since an index may be positioned to any location in a list, these messages enable the construction of any
desired sequence of members. Since the current index location remains unchanged, multiple members
may all be inserted successively at some point in a list; previously added members are just pushed out
one-by-one as new members are added.

An index with a location of Start, End, or Between is just as valid a location for addAfter: or addBefore:
as an index positioned at a member. In these cases, there is no member at the current location of the
index, so the new member is just inserted directly at the current index location, and the index is left
positioned between the new member and the member that was previously adjacent in the opposite
direction. If the previous location was Start and the message addAfter:, or the location was End and the
message addBefore:, the index location remains Start or End.

Protocols adopted by ListIndex
Index (see page 108)

RETURNABLE (see page 66)

Methods

Phase: Using
• - (void)addBefore: anObject

Add a member before the index.

• - (void)addAfter: anObject

Add a member after the index.

Collections

118

ListShuffler

Name
ListShuffler — A class to randomize the order of a given Swarm List

Description
ListShuffler randomizes the order of the elements in a List; either the whole list or the num lowest
elements. The list must be supplied. An uniform distribution can be supplied, or the system- supplied
uniformUnsRand is used. The algorithm is from Knuth. All these methods modify the underlying
collection, so any indexes should always be regenerated.

Protocols adopted by ListShuffler
Create (see page 46)

Drop (see page 54)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setUniformRandom: dist

The create:setUniformRandom method creates the Shuffler and connects the
supplied distribution object.

• - setUniformRandom: dist

the setUniformRandom: method connects the supplied uniform distribution
to the Shuffler (run after createBegin:).

Phase: Using
• - shufflePartialList: list Num: (unsigned)num

the shufflePartialList:Num method randomizes the order of the 'num' lowest
elements of the list, or the whole list if (num > size of list).

• - shuffleWholeList: list

the shuffleWholeList method randomizes the whole list.

Collections

119

Map

Name
Map — Collection of associations from key objects to member objects.

Description
Map is a subtype of KeyedCollection in which the key value associated with each member is
independent of the member itself. Whenever a new member is added to the collection, a key value to be
associated with the member must be supplied also. A Map defines a mapping from key values to
member values.

For the Map type, key values are independent of the member values with which they are associated.
Map defines two additional options to document information about its key values. Map also defines its
own messages to distinguish the key value from member value in any operation which involves both.

Protocols adopted by Map
KeyedCollection (see page 115)

CompareFunction (see page 104)

Serialization (see page 67)

CREATABLE (see page 44)

Methods

Phase: Using
• - (id <MapIndex>)mapBegin: (id <Zone>)aZone

Returns a MapIndex, the special index for the Map type

• - at: aKey replace: anObject

Replaces an existing member value associated with a key value by a new
value given as its final argument. The message returns the member value
which was formerly associated with the key value.

• - (BOOL)at: aKey insert: anObject

at:insert: inserts an entry into a Map containing the key and member
values given as its arguments. It returns true if the key was not
previously contained in the collection. An attempt to insert a duplicate
key is simply rejected and false is returned.

Collections

120

MapIndex

Name
MapIndex — The index behavior for a Map.

Description
The index behavior for a Map.

Protocols adopted by MapIndex
KeyedCollectionIndex (see page 115)

RETURNABLE (see page 66)

Methods

Phase: Using
• - get: (id *)key

Return the current item and it's key.

• - prev: (id *)key

Return the previous item and it's key.

• - next: (id *)key

Return the next item and it's key.

• - (unsigned long)getKeyValue

The getKeyValue message returns the integer value associated with the
current location of the index. It is exactly like getKey, except the value
is returned as an integer. (A common application of this method is to get
a Schedule time value associated with an Action in Java.)

• - getKey

The getKey message returns the key value associated with the current
location of the index. It returns nil if the index is not currently
positioned at a member.

• - setKey: aKey

The setKey: messages repositions the index to an entry having a key value
that matches its argument. If there is more than one entry matching this
key value, the index is positioned to the first entry that matches.

Collections

121

MemberBlock

Name
MemberBlock — A way to wrap an existing C array for access as an object collection.

Description
This option provides a means to wrap an existing C array for access as an object collection. If this option
is given, dynamic resizing is not supported. The current C array being wrapped, however, can be
replaced by giving a new setting for MemberBlock after an array already exists. A new setting can be
given only if some setting was initially given at create time.

Even if a setting was not given for MemberBlock at create time, the get message for MemberBlock
always returns a pointer to whatever internal memory array is currently being used by the array object. If
a MemberBlock setting was given, the pointer returned will be the same as the one previously given. In
either case, the pointer returned may be used to manipulate member values in any way desired using
native C expressions. After an array has been created, there is no way to determine whether the
MemberBlock pointer was established externally or by internal allocation. If the pointer was established
by internal allocation, however, the external program must make no attempt to free or otherwise
reallocate this memory.

A count must always be supplied with an external member allocation, using the setCount: argument of
the compound message. If an external allocation is being used, the only way to reset the count is also to
reset MemberBlock; any attempt to use the setCount: message by itself will raise an error. Whenever an
external member allocation is being used, the external program is entirely responsible for assuring that
the MemberBlock value is a pointer to valid allocated memory containing at least the number of member
slots given by setCount:.

With an external member allocation, the array itself will not attempt to either allocate this memory or
free it when the array is dropped. Dropping the array only removes its reference to the external
allocation.

Since an array neither allocates nor frees an external member allocation, the same region of allocated
memory may be referenced by multiple arrays, including overlapping member ranges each defined by
starting location and count. This flexibility enables alternate subrange views of a single, contiguous
initial allocation by means of separately created external collections.

Protocols adopted by MemberBlock
None

Methods

Phase: Creating
• + create: (id <Zone>)aZone setMemberBlock: (id *)members setCount:

(unsigned)count

Phase: Setting

Collections

122

• - (void)setMemberBlock: (id *)members setCount: (unsigned)count

Phase: Using
• - (void *)getMemberBlock

MemberSlot

Name
MemberSlot — Allocation in member/key for fast setMember:/setKey:

Description
The MemberSlot option indicates that space has been reserved within each member that allows it to
contain a link directly to its position in the enumeration for a collection. If such space has been reserved,
special messages can be used that rapidly position an index directly to the member. Operations to
remove members are also much faster.

The value of MemberSlot specifies the offset in bytes from the start of each member where the space for
its position link has been reserved.

The offset of the position link from the start of a member may be either positive or negative, in the range
of -2048 to +2047. The default value of MemberSlot is UnknownOffset (a large negative value), which
specifies that no slot for an internal position link is available within each member.

Protocols adopted by MemberSlot
None

Methods
None

Typedefs
• dupmember_t struct { void *memberData[2]; id owner; }

• member_t struct memberData { void *memberData[2]; }

Collections

123

Offsets

Name
Offsets — Methods for accessing collection members by position.

Description
An offset is an integer value that gives relative position of a member in the enumeration sequence of a
collection. Offsets start the count of the first member at zero, just like C array indexing.

Offsets provide an alternate means to access the members of a collection, without creating a separate
index object. Some collection subtypes (such as Array) support fast, direct access by integer member
offset, while others support member offsets only as a shorthand for sequential access through every
preceding member. Access by offsets is supported on all collections regardless of whether its speed on a
particular collection type.

atOffset: and atOffset:put: raise the error OffsetOutOfRange if the offset is greater than or equal to the
count of members in the collection.

Protocols adopted by Offsets
None

Methods

Phase: Using
• - getLast

Equivalent to [aCollection atOffset: [aCollection getCount] - 1].

• - getFirst

Equivalent to [aCollection atOffset: 0].

• - atOffset: (unsigned)offset

Returns the member at a particular member offset.

• - atOffset: (unsigned)offset put: anObject

The atOffset: put: message replaces the member at a particular offset with
a new value, and returns the previous member value at this offset.

Collections

124

OrderedSet

Name
OrderedSet — A set of members in an externally assigned linear sequence.

Description
An OrderedSet is a totally ordered collection of members in which every member also has a distinct
identity as defined by comparison against a key value.

(.. This type is currently implemented only using the low-level option of an internal member slot, and
the messages for that option do not match the documentation in KeyedCollection. If you need one of
these objects, then either use a List or wait for some other implementation.)

The sequence of members of an OrderedSet is established using the same messages that maintain
member sequence in a List. An OrderedSet supports customization and access by key as defined by Set
and KeyedCollection. The union of messages from all these sources defines the total interface of an
OrderedSet. Members with duplicate keys, however, are not valid for an OrderedSet. Each member must
have a unique position within the member sequence

Protocols adopted by OrderedSet
Set (see page 130)

List (see page 116)

CREATABLE (see page 44)

Methods
None

Collections

125

OutputStream

Name
OutputStream — Stream of output bytes.

Description
The OutputStream type currently supports the writing of types to a Lisp-like format. It is a placeholder
for more general stream types. A stream is a collection that supports only sequential addition of
members (an output stream) or sequential removal of members (an input stream). With the exception of
the -catC: method, all messages write to stream in Lisp archiver format.

Protocols adopted by OutputStream
Create (see page 46)

Drop (see page 54)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setExprFlag: (BOOL)exprFlag

• - setFileStream: (FILE *)fileStream

• + create: (id <Zone>)aZone setFileStream: (FILE *)fileStream

Phase: Using
• - (void)catNil

• - (void)catUnsignedPair: (unsigned)a : (unsigned)b

• - (void)catEndMakeClass

• - (void)catStartMakeClass: (const char *)className

• - (void)catEndMakeInstance

• - (void)catStartMakeInstance: (const char *)typeName

• - (void)catEndParse

• - (void)catStartParse

• - (void)catEndQuotedList

• - (void)catStartQuotedList

• - (void)catEndList

• - (void)catStartList

Collections

126

• - (void)catEndCons

• - (void)catStartCons

• - (void)catEndFunction

• - (void)catStartFunction: (const char *)functionName

• - (void)catClass: (Class)class

• - (void)catType: (const char *)type

• - (void)catEndArray

• - (void)catArrayRank: (unsigned)rank

• - (void)catSeparator

• - (void)catString: (const char *)str

• - (void)catSymbol: (const char *)symbol

• - (void)catKeyword: (const char *)keyword

• - (void)catEndExpr

• - (void)catStartExpr

• - (void)catLiteral: (const char *)str

• - (void)catPointer: (const void *)ptr

• - (void)catUnsignedLongLong: (unsigned long long)ulnglng

• - (void)catLongLong: (long long)lnglng

• - (void)catUnsignedLong: (unsigned long)ulng

• - (void)catLong: (long)lng

• - (void)catUnsignedShort: (unsigned short)usht

• - (void)catShort: (short)sht

• - (void)catUnsigned: (unsigned)un

Writes an unsigned to stream in Lisp archiver format

• - (void)catInt: (int)i

Writes an integer to stream in Lisp archiver format

• - (void)catLongDouble: (long double)dbl

Writes a double to stream in Lisp archiver format

• - (void)catDouble: (double)dbl

Writes a double to stream in Lisp archiver format

• - (void)catFloat: (float)flt

Writes a float to stream in Lisp archiver format

• - (void)catChar: (char)ch

Writes a character to stream in Lisp archiver format

• - (void)catBoolean: (BOOL)bool

Collections

127

Writes a boolean to stream in Lisp archiver format

• - (void)catC: (const char *)cstring

Writes character string to stream

• - getExpr

• - (FILE *)getFileStream

Permutation

Name
Permutation — A class that represents a permutation of elements of a collection

Description
Permutation is used to generate a permutation of elements of a a collection and store them in an array for
fast access. Permutation only mirrors the original collection. Updates of contents of Permutation will not
reflect on the original collection.

Protocols adopted by Permutation
Collection (see page 103)

Create (see page 46)

Array (see page 99)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setUniformRandom: rnd

• - setLastPermutation: (id <Permutation>)permutation

• - setCollection: (id <Collection>)collection

Collections

128

PermutationItem

Name
PermutationItem — An element of a Permutation

Description
An element of a Permutation

Protocols adopted by PermutationItem
Create (see page 46)

RETURNABLE (see page 66)

Methods

Phase: Creating
• - setPosition: (unsigned)position

• - setItem: item

Phase: Using
• - (unsigned)getPosition

• - getItem

Collections

129

PermutedIndex

Name
PermutedIndex — General PermutedIndex class.

Description
PermutedIndex class may be used for randomized traversals of a collection. Methods implemented offer
the same functionality as Index class does, except that traversal is randomized.

Protocols adopted by PermutedIndex
Index (see page 108)

RETURNABLE (see page 66)

Methods

Phase: Creating
• - setUniformRandom: rnd

• - setCollection: aCollection

Phase: Using
• - reshuffle

Collections

130

Set

Name
Set — Collection of members each having a defined identity.

Description
Set is a subtype of KeyedCollection in which the key value associated with each member is determined
by the member value itself. The key value may be identical to the member itself, or may be defined as a
a function of the member using a create-time option.

The Set type inherits most of its interface from the KeyedCollection supertype. Set defines no create-
time options beyond those already defined by KeyedCollection. If a custom compare or bucket function
is specified, the member value is passed as the key value arguments of these functions. These functions
determine what part of the member value is part of the key value, by determining which key values will
compare equal to any member.

Protocols adopted by Set
Set (see page 130)

KeyedCollection (see page 115)

CREATABLE (see page 44)

Methods

Phase: Using
• - replace: anObject

The replace: message replaces a member stored at a given key with another
member value that matches the same key. The new value to replace the
existing one is passed as the argument. replace: returns the member value
that was replaced, or nil if the collection contained no member with a
matching key.

• - (BOOL)add: anObject

The add: message adds a new member to a set.

Collections

131

String

Name
String — Character string object (later to support collection behavior).

Description
The String object type packages a null-terminated, C-format character string into an object. All memory
allocation needed to hold the string value is handled by the object. This type currently defines only the
most rudimentary operations for initializing and appending C-format character strings. These are
sufficient for its current limited roles in places that need a uniformity between character strings and
other kinds of allocated objects.

Protocols adopted by String
Create (see page 46)

Drop (see page 54)

Copy (see page 45)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setC: (const char *)cstring

Phase: Setting
• - (void)setC: (const char *)cstring

Phase: Using
• - (unsigned)getCount

• - (void)catC: (const char *)cstring

• - (const char *)getC

Collections

132

General

Name
collections — Standard collection types

Description
The collections library follows the library interface conventions of the defobj library. It also depends on
standard supertypes and classes defined by this library. Initialization of the collections library
automatically initializes the defobj library as well. Since defobj also requires the collections library, both
must always be linked into an application together.

Macros
• ARCHIVERDOTP(obj)

• ARCHIVEREOLP(obj)

Functions
• int compareCStrings(id, id)

A routine for comparing C strings.

• int compareIDs(id, id)

A routine for comparing objects. Only useful for equality (EQ)
discrimination.

• int compareIntegers(id, id)

A routine for comparing integers.

• int compareUnsignedIntegers(id, id)

A routine for comparing unsigned integers.

Globals
id <Symbol> ArchiverLiteral

 Tokens used by the archiving parser.
id <Symbol> ArchiverQuote

 Tokens used by the archiving parser.
id <Symbol> ArchiverEOL

 Tokens used by the archiving parser.
id <Symbol> ArchiverDot

 Tokens used by the archiving parser.

Activity Library
Overview

The activity library is responsible for scheduling actions to occur within a simulated world, and for
making these actions actually happen at the right time in the right order. It provides the foundation of
dynamic, object-oriented simulation within Swarm.

Actions consist of messages to objects, calls to functions, or groups of actions in some defined order.
The activity library guarantees that all these actions, and the state changes they produce, occur at
predictable points in time. Time is defined by the relative order of actions, and may also be indexed by
the discrete values of a world clock.

1. Dependencies
Following are the other header files imported by <activity.h>:

#import <collections.h>

The activity library follows the Swarm Defobj Library (see page 26) of the Defobj Library (see page
26). The activity library relies heavily on the basic collection types defined in the Collections Library
(see page 83), and the collection interfaces are an integral part of the interfaces defined within this
library. Initialization of the activity library is done automatically by the containing Swarm libraries, and
automatically initializes the collections and defobj libraries as well.

2. Compatibility
No explicit compatibility issues for particular versions of Swarm

3. Usage Guide

3.1. Role of the activity library in Swarm
The activity library provides a foundation for dynamic, object-oriented simulation in Swarm. Swarm
assumes that a user defines an object-oriented representation for the structure of a world to be simulated.
Once such a representation is established, activity library components are responsible for generating all
state changes and flow of information within it. These state changes must be carefully controlled to
ensure that they occur only at appropriate times and places in the model. The activity library provides
mechanisms to establish this control.

Once the simulation of a dynamic model begins, everything that happens to the model occurs as a direct
result of messages sent to world objects by activity library components. These components are also
represented by objects, since this is the most effective means for their representation as well, but their
purpose is not to represent the current state of the simulated world, but rather to generate changes in
world objects by sending messages in a valid order. The activity library has two basic categories of

components: those that represent messages to be sent, including constraints on permissible order for
sending them, and those that execute the message sends these representations specify, making sure they
conform with all constraints.

All changes to a model occur as a result of messages sent to objects within it. These messages invoke
compiled methods of receiving objects, which may change local state or send messages to other objects
to propagate effects as widely as needed. Because the activity library finally interacts with the world
model just by invoking its defined methods, the model can prepackage as much behavior as it can in the
form of fast compiled methods. The activity library just triggers the prepackaged behavior at proper
times under its own explicit, dynamically interpreted representation.

As conditions shift during execution of a model, the model can also examine and alter the representation
of its future behavior contained in the activity structures that drive it. Any changes to this future
behavior, however, still occur only as a result of some currently executing action initiated by the activity
library.

3.2. Activity library components
The activity library defines one set of basic object types to provide a very rich representation of the
kinds of message sending patterns it could generate. Its other major category of object types controls and
tracks a current state of processing within these representations.

Both these representations are more abstract than typical object representations, since they deal not with
any constant state which can be statically analyzed, but with shifting patterns of messages to be fired to
generate such state. While the basic structure of a Swarm simulation is that of a discrete event
simulation, its activity representation is also more complicated than most such systems.

There are two basic reasons for the potential complexity of a Swarm activity representation. One is that
Swarm supports a decentralized representation of activity to be generated, both to reflect the nature of
much of the behavior that it simulates, and so that execution may be distributed across multiple parallel
processors. To avoid any need for synchronizing its decoupled activities more often than necessary,
Swarm enables a model designer to avoid overspecifying constraints on the patterns of message sends
which might potentially be valid. The partial order representation it adopts for a distributed and
decoupled plan of activity is inherently more complicated than the single centralized event list adopted
by many discrete event simulation systems.

The other reason for potential added complexity is that Swarm's representation of intended activity may
be broken into many separate, modular components, which can be bound together in various ways to
create larger components. The Swarm composition structure, when fully implemented, will be
fundamentally as powerful as the modular abstractions found in most programming languages, with the
added complexity of controlling the time at which various events occur.

In spite of this high potential complexity, none of these features is needed for many simple models, such
as those that contain only a small variety of basic behaviors, or which define all their behavior to occur
at regular, repeating timesteps. The Swarm representation is extremely rich to enable it to scale to large,
multi-level models with a variety of dependent behaviors built into the model, and also to facilitate
running models on massively parallel machines. Many of the features which seem complex, moreover,
are also especially well-suited to building modular and reusable library components. It is anticipated that
many of the more advanced features will find their heaviest usage in pre-built libraries that hide internal
complexity from applications that use them.

No matter how complex the structures built from them, all the activity library components finally result
in the direct execution of messages sends to objects in a model. Because of this direct execution, very
precise meaning can be defined for each of them, in terms of message sends that can or must occur.
Every component of a structure to be executed, and every event of its execution, can also be accessed
using the interfaces of an object-oriented representation. This means that tools can be built to understand
and interact with any components to be executed, and also to trace and debug activity as it occurs. None
of these tools have been built yet as part of Swarm, but many of the activity library interfaces are present
to support them, not because normal use of the library requires the added components.

3.3. Action plan components
The first set of activity library components represent messages to be sent to objects in a model, together
with constraints in the order in which they may be sent. All these components are defined as subtypes of
the one generic type called ActionPlan.

The two basic kinds of action plans are a simple group of actions to be performed in some order, called
an ActionGroup, and a series of actions to be performed at discrete points in time, called a Schedule.
The basic element of an action plan is a simple object called an Action. An action defines a particular
message to be sent to an object or objects.

In its representation of action plans, Swarm relies heavily on the dynamic message sending capabilities
of the Objective C language. The support of Objective C for dynamic message sends is absolutely
crucial to Swarm's implementation of generic activity structures. Objective C defines a special kind of
data value called a selector, which identifies a message according to its name. One of these selector
values is stored in each action of an action plan. During execution of the plan, Objective C machinery
performs the actual message send using its selector.

Action plans are free-standing objects that may be created directly by a user program, using a variety of
selectable create-time options. Once created, action plans may also refer to each other, by containing
special kinds of actions to start another action plan or to perform all the actions within it.

Individual actions can be created only as completely controlled components of some action plan. They
are created not by a standard create message, but by special messages (each containing the phrase
createAction in its name) sent to an action plan that creates the action as part of the action plan. If the
same action is needed in more than one plan, it has to be created in each plan where it is needed. If the
entire action plan is dropped, all its actions are also automatically dropped. So the only action plan
components which need to be directly managed by an application are the action plans themselves.

Action plans are relatively straightforward components, because they are entirely passive. The only
actions they ever contain are those which an application has created in them. These actions stay in them
indefinitely unless a special option is requested to clean them out as each one is executed. Because these
plans are passive, read-only components to all execution machinery, if the same pattern of actions needs
to be triggered at multiple points in a model, it's perfectly valid to create one copy of the actions in an
action plan, and then refer to the plan anywhere the actions may be needed.

Even though action plans are passive, containing only what has been placed in them, there is no
requirement that their contents remain fixed. Both of the action groups and schedules are implemented
directly as collections of their actions. New actions may be added at any time, and existing ones may be
dropped or moved from position to another. The contents of action plans may be as dynamic as they
need to be to represent the future actions needed in a model. None of these shifting contents has any
effect on the model until actually processed during model execution.

3.4. Model execution component
The main responsibility of model execution is just to perform the actions specified by an action plan, in
an order of execution consistent with any requirements of the plan. Each action plan may specify as few
or as many constraints as it likes over the possible order in which its actions could be performed. Given
these specifications, the execution objects are entirely responsible for selecting each action to be
performed and then performing them.

There are two simple cases of ordering that account for most all usage, including that of the current
Swarm demo programs. One is to permit the actions to be performed in any order, including concurrent
execution if hardware and software support were available to do this. The other is to require them to be
performed in some specific sequence, one after another, so that the effects of one action could depend on
actions which preceded it. This sequence could be either fixed and predetermined, or dynamically
established each time the action plan is performed. If a dynamically determined sequence is needed,
perhaps even selecting which actions are to be performed at all, users can provide custom subclasses for
an action plan and an execution object that performs it. A builtin option is to generate an entirely
random sequence each time a plan is executed.

Each time an action plan is being processed, a special kind of object called an activity is created entirely
automatically by the runtime processing machinery. These activity objects implement the internal
machinery of a virtual processor which has the ability to execute action plans. To get any activity started
on a model, a processor is first initialized to run a single top-level plan. All other activity during the
lifetime of a model must occur as a result of actions initiated by this plan (which may include the startup
of other plans).

Because the activity objects are internal to the processing machinery, an application can usually just
ignore their existence. They come and go dynamically as various action plans are started and completed,
all arranged in a stack or tree of current activities controlled by a single top-level processor. The activity
objects are potentially useful, however, to obtain information about the context in which an action is
currently running, or to build debugging or tracing tools to understand actions being performed.

One of the kinds of context information available from an activity object is the current time of a clock
value incremented as a schedule is processed. A schedule is a kind of action plan in which all actions
occur at specific points in time explicitly established within the schedule. As a schedule is executed, the
activity object keeps a current time clock, which holds a global time from the start of all model
execution, regardless of the time when the schedule itself was started. An activity object that processes a
schedule is called a timeline activity, because its time continually increases from a global base time
regardless of times contained in the schedule.

New activities are created whenever an action plan being processed contains an action to perform
another action plan, or to start another action plan for autonomous execution. If one action plan performs
another, its own processing is stopped until a new activity processing the other action plan completes. If
one action plan starts another, the new action plan is started as an autonomous activity controlled only
by a higher-level, containing activity.

A Swarm is an activity that exists only to control and coordinate other started subactivities. Unless the
subactivities have some special form of explicit synchronization, none of their internal actions has any
required ordering relative to those of other plans except as explicitly established during activity
execution. The swarm can serve as a simple container of started subactivities which only occasionally
synchronize for messages they send to each other. The swarm can be used to hold collections of objects
as well as its subactivities as needed to help them coordinate with one another.

One special form of synchronization within a swarm is built into the virtual processing machinery. This
synchronization interleaves the actions that occur for every successive time value during processing of
timeline subactivities. This merging of actions is often relied on to interleave display and analysis
processing with the scheduled actions of a base model. Since no other mechanisms for subactivity
coordination are implemented in the current version of Swarm, synchronizing subschedule activities is
the major current role of the Swarm activity type. In later versions of Swarm, a swarm will also serve as
an important means for organizing a large models into clusters of more densely interacting components,
and will also provide a basis of decomposition for parallel execution.

4. Advanced Usage Guide
Unavailable

5. Subclassing Reference
Subclassing is supported by the activity library as an integral technique for extending the framework it
implements. There are two specific places where subclassing is expected as the normal technique of
extension: definition of concurrent action groups, and definition of customized swarm objects.
Concurrent action groups are not yet fully documented because their full interface is still being finalized.
Swarm subclasses should inherit from the Swarm superclass defined in the Objectbase Library (see page
183) library; the activity library provides the underlying support packaged by this superclass.

6. Interface Design Notes
Unavailable

7. Implementation Notes
Unavailable

Documentation and Implementation Status

The activity library is in process of being converted to draw even more of its support from underlying types and
classes in the defobj and collections libraries. The basic interface has already been changed to reflect this
consolidation, so the progrmming interface for currently available function is expected to remain stable.

The activity library follows the documentation structure of the Swarm Defobj Library (see page 26). There are
placeholders for each section of documentation so that all links should at least link up with something, whether or
not there's anything there. The Interface Reference section is already fairly complete, and there is a start toward a
more complete Usage Guide section. The Advanced Usage Guide and other sections will come at a later time.

An attempt has been made to remove all discussion of future capabilities and to document instead only the capability
that is already there.

Source for code examples in the Usage Guide is included in the text where it occurs. Source consists of fragments
taken from example programs. The example programs themselves may be downloaded from the web pages and
compiled on your own system, using links provided for that purpose. (.. currently there are no code examples in the
Usage Guide, which so far is only a general overview of the activity library ..)

There is also a directory of test programs (GridTurtle Test Programs (see page 404), contained within the
documentation release directory) that provides additional code examples of many basic features of the defobj,
collections, and activity libraries. These code examples are very rough and subject to change, however, since their
main use is with each new release of the libraries to test various new or existing features. They are sometimes the
only source, however, for examples of some library features that have not yet been used anywhere else.

Revision History
2001-06-11 activity.h mgd

 (ActionSelector): Move setMessageSelector: to setting phase.

2000-11-27 activity.h mgd

 (ActionConcurrent): New protocol.

2000-07-24 activity.h mgd

 (Action): Don't adopt RETURNABLE.

2000-07-20 activity.h mgd

 ([Schedule -setKeepEmptyFlag:]): Make create-time.

2000-06-23 activity.h mgd

 (ConcurrentGroup): Add _setActionConcurrent_ and _getEmptyConcurrent_. (ConcurrentSchedule): Adopt
ConcurrentGroup instead of ActionGroup.

2000-05-23 activity.h mgd

 (ActionSelector): Split out of ActionTo. (ActionForEachHomogeneous): New protocol.

2000-05-18 activity.h mgd

([{ActivationOrder,Schedule} remove:]): Hide in a #ifndef IDL.

2000-04-02 mgd

 Swarmdocs 2.1.1 frozen.

2000-04-02 activity00.sgml mgd

 Delete sentence about top-level functions calls and methods being a "concern" to the activity library. Huh?

2000-02-29 mgd

 Swarmdocs 2.1 frozen.

1999-12-01 activity.h mgd

 (ActionChanged): New type.

1999-11-23 activity.h mgd

 (ActivityIndex): New protocol. (Activity): Move before Action. Add _performAction_:. (ActionTo, ActionCall):
Adopt Action. (ActionArgs): Don't adopt Action. (COMPLETEDP, HOLDINGP, INITIALIZEDP, RELEASEDP,
RUNNINGP, STOPPEDP, TERMINATEDP): Remove (now) unnecessary casting. (ProcessType): Moved to design
document.

1999-10-31 activity.h mgd

(ActionCreatingFAction): New protocol. (ActionCreating): Adopt it. (Schedule): Add at:createFAction: declaration.

1999-10-31 activity.h mgd

 (FAction): Advertise. (Action): Adopt Create and Drop. (ActionArgs, ActionTo, ActionCall): Organize methods
into creating and using sections.

1999-09-16 activity.h mgd

 Add ActionTo, ActionCall, and ActionForEach protocol-conforming return types. (DefaultOrder): Move
setDefaultOrder: to setting phase.

1999-09-07 activity.h alex

 (Schedule): Re-enable conformance to Map.

1999-08-22 activity.h mgd

 (Action, ActionCall, ActionTo, ActionForEach, Activity, ScheduleActivity, SwarmActivity, ForEachActivity,
ConcurrentGroup, ConcurrentSchedule, ActivationOrder): Change from CREATABLE to RETURNABLE.
(SwarmProcess): Remove CREATABLE. Return id <Activity> for getActivity. (Schedule): Add Zone typing for
+create:*.

1999-07-28 activity.h alex

 (Schedule): Add +create:setRepeatInterval: and +create:setAutoDrop: convenience methods to CREATING phase
of protocol.

1999-07-12 activity.h vjojic

(getCurrentSchedule): Typo.

1999-07-11 activity.h vjojic

 Make Action, ActionCall, ActionTo, ActionForEach, Activity, ScheduleActivity, SwarmActivity, ForEachActivity
CREATABLE protocols.

1999-06-16 activity.h mgd

 (RelativeTime): Make setRelativeTime: return self. (RepeatInterval): Likewise.

1999-06-03 activity.h alex

 (ActionCreatingTo): Fix missing message receiver in the example code provided. Thanks to Ken Cline
<kcline@c3i.saic.com> for the report.

1999-05-29 activity.h mgd

 Include externvar.h. (ActionForEach, CompoundAction, ActionGroup): Add DefaultOrder compliance.
(ActionType): Add (id <Activity>) return types to activate* methods. Rearrange protocols so that the Activity
protocol will be declared for (id <Activity>).

1999-05-28 activity.h mgd

 Use `externvar' for external variable declarations. (TimebaseMax): Remove; it's unused.

1999-02-05 activity.h mgd

 (Schedule): Declare -setKeepEmptyFlag:.

1998-12-22 activity.h mgd

 (ActionType): Remove activate:.

1998-12-20 activity.h mgd

 (Activity): Remove stepEntry and stepExit methods (moved to design document). (ScheduleActivity): Remove
setTerminateAtEnd:, getTerminateAtEnd, getSynchronizedMode, and getCurrentTimebase (moved to design
document). Add creating phase tag. (ActionType): Remove -getActionType.

1998-12-17 activity.h mgd

 (ActionGroup): Don't adopt OrderedSet. (Schedule): Don't adopt Map. (RelativeTime): Remove
create:setRelativveTime:. (RepeatInterval): Remove create:setRepeatInterval:. (Action): Disable declaration of -
getActionType. (ActionType): Disable declaration of activate:.

1998-12-11 activity.h vjojic

 (DefaultOrder): DefaultOrder reinserted.

1998-10-29 activity.h mgd

 (ActionCreatingTo): Fix example syntax for createActionTo:message:.

1998-09-08 activity.h mgd

 (COMPLETEDP, HOLDINGP, INITIALIZEDP, RELEASEDP, RUNNINGP, STOPPEDP, TERMINATEDP):
New macros.

1998-07-22 activity.h mgd

 Replace @deftype with @protocol throughout.

1998-07-12 activity.h mgd

 (Schedule): Declare -insertGroup:.

1998-06-17 Makefile.am mgd

 Include from refbook/ instead of src/.

1998-06-15 Makefile.am mgd

 (MODULE): New variable. Include Makefile.rules from src. Remove everything else.

1998-06-14 activity.h mgd

 Remove DefaultOrder; don't adopt it in CompoundAction. Remove example that uses it in ConcurrentGroupType.
Remove mention of partially ordered sets from ActionGroup, Schedule, and Action. Remove
InternalTimeMultiplier; don't adopt it in SwarmProcess.

1998-06-12 activity00.sgml, activitycont.sgml, activitymeta.sgml mgd

 Update IDs to SWARM.module.SGML.type.

1998-06-06 activity.ent mgd

 Use public identifiers.

1998-06-05 Makefile.am mgd

 (swarm_ChangeLog): Add.

1998-06-05 activity.h mgd

 Add/update documentation tags. Declare addLast: and remove: (in using phase).

1998-06-01 activity.h alex

 (ActionType): Added method -activate: anActionType.

1998-05-23 Makefile.am mgd

 New file.

1998-05-23 activity.ent.in mgd

 New file.

1998-05-23 activity.ent mgd

 Removed.

1998-05-22 mgd

 Begin revision log.

1998-05-22 activity.h alex

(getCurrentTime,getTopLevelActivity): Added (//#) documentation strings. (_activity_zone, _activity_trace): Made
existing inline comments into (//G) doc strings:

1998-05-06 activity.h mgd

 Remove instances of <p> Minor spacing changes to methods. (ActionType, ActionCreatingCall, ActionCreatingTo,
ActionCreatingForEach, ActionCreating, Action, ActionArgs, ActionCall, ActionTo, Activity, ForEachActivity,
ScheduleActivity, SwarmActivity): Add phase tags. (GetSubactivityAction): Add //S and //D tags.
(SynchronizationType, InternalTimeMultiplier): Add //S.

1998-04-29 activity.h mgd

 Include new protocols DefaultOrder, AutoDrop in CompoundAction. Include new protocols ActionCreatingTo,
ActionCreatingForEach in ActionCreating. Include new protocols RelativeTime, RepeatInterval,
ConcurrentGroupType, SingletonGroups in Schedule. Include SynchronizationType and InternalTimeMultiplier in
SwarmProcess. Disable setTerminateAtEnd:, getTerminateAtEnd, setSynchronizedMode:, getSynchronizedMode,
and getCurrentTimebase from ScheduleActivity protocol. Add documentation tags throughout.

1997-12-17 activity.h mgd

 Constify argument to _activity_context_error.

143

Action

Name
Action — An action type that has been customized for direct execution by an action interpreter.

Description
Action is a common supertype of all action types which may be created within an action plan. Each
action is always controlled by a single action plan to which it belongs. This action plan is referred to as
its owner. Given the action object, its owner plan may be obtained using the inherited getOwner
message.

Actions are allocated in the same zone as their owner plan, and may be created only using one of the
createAction messages on an ActionGroup or Schedule. Each of these messages returns the action that
was created as its return value. Actions in an action plan may also be obtained by processing the plan
using any of its messages inherited from its underlying collection. Actions may also be removed from an
action plan using a remove message on the underlying collection.

(.. Note: currently, an action cannot be removed while it is currently being executed. This means that the
function or message called by an action cannot itself remove that same action from its action plan. This
restriction will be removed in the future.)

Separate subtypes of Action are defined for each of the various forms of createAction messages that
create them. The current representation of these actions will be undergoing change as support for their
parameter and return types is migrated into more basic support from the defobj library. Each action type
provides messages to retrieve and set the values of all argument values bound into the action. These
capabilities will remain, but different messages will eventually be supported. This documentation will be
completed once the messages supported on Action types are finalized.

Protocols adopted by Action
Create (see page 46)

Drop (see page 54)

GetOwner (see page 61)

Methods

Phase: Using
• - (void)_performAction_: (id <Activity>)activity

Activity

144

ActionArgs

Name
ActionArgs — Supertype of ActionCall, ActionTo, and ActionForEach.

Description
The ActionArgs subtypes all implement a specific, hard-coded method for binding an action type to a
fixed number of arguments. All the arguments must have types compatible with id type. Eventually,
more generic methods for binding an action type to any number and types of arguments and return
values will also be provided.

Protocols adopted by ActionArgs
None

Methods

Phase: Creating
• - (void)setArg3: arg3

• - (void)setArg2: arg2

• - (void)setArg1: arg1

Phase: Using
• - getArg3

• - getArg2

• - getArg1

• - (unsigned)getNArgs

Activity

145

ActionCall

Name
ActionCall — An action defined by calling a C function.

Description
An action defined by calling a C function.

Protocols adopted by ActionCall
Action (see page 143)

ActionArgs (see page 144)

RETURNABLE (see page 66)

Methods

Phase: Creating
• - (void)setFunctionPointer: (func_t)fptr

Phase: Using
• - (func_t)getFunctionPointer

ActionChanged

Name
ActionChanged — An action generated when actions changes from single to concurrent.

Description
An action generated when actions changes from single to concurrent.

Protocols adopted by ActionChanged
Action (see page 143)

RETURNABLE (see page 66)

Methods
None

Activity

146

ActionConcurrent

Name
ActionConcurrent — An action generated when two or more actions co-occur.

Description
An action generated when two or more actions co-occur.

Protocols adopted by ActionConcurrent
Action (see page 143)

RETURNABLE (see page 66)

Methods

Phase: Using
• - (id <ActionGroup>)getConcurrentGroup

Activity

147

ActionCreating

Name
ActionCreating — Protocol shared by ActionGroup and Schedule.

Description
ActionCreating defines the createAction messages for ActionGroup just so that this protocol may be
shared with Schedule, where they provide a convenience interface for the creation of actions in the
schedule at time zero.

The createAction messages declare all arguments of the message to be of object id type, but you are free
to cast other pointers and values up to the limits defined by the global portability assumptions. These is
not portable across all machine architectures, but is expected to be portable across the 32-bit and 64-bit
architectures on which Swarm will be supported. The message you send must still be declared to receive
the type of argument you actually pass, before you cast it to the id type.

(.. Alternative approaches to argument typing are currently in development, but these will supplement
rather than replace the current forms of createAction messages.)

Each of the createAction messages returns the action object which it creates. Each different kind of
createAction message returns a different type of Action object with a matching name. These Action
objects provide access to all the information with which the Action was initialized. The complete set of
Action object types is defined below together with the messages that may be used to access their
contents. (.. The implementation of the Action objects is currently undergoing change as the
responsibility for parameter and return value typing gets taken over by ActionType in defobj.)

Protocols adopted by ActionCreating
FActionCreating (see page 167)

ActionCreatingCall (see page 148)

ActionCreatingTo (see page 150)

ActionCreatingForEach (see page 149)

FActionCreatingForEachHeterogeneous (see page 168)

FActionCreatingForEachHomogeneous (see page 168)

Methods

Phase: Using
• - createAction: anActionType

Activity

148

The createAction: message specifies that processing of another action type
is to be performed by the action. The referenced action type is performed
in its entirety, from start to finish, as the effect of the single created
action.

ActionCreatingCall

Name
ActionCreatingCall — An action that calls a C function.

Description
The createActionCall: messages are similar to the createActionTo messages, except they specify the
action to be performed as a binding of a C function to a list of argument values. The correct number of
arguments for the function pointer passed as the initial argument must be supplied.

Protocols adopted by ActionCreatingCall
None

Methods

Phase: Using
• - (id <ActionCall>)createActionCall: (func_t)fptr

• - (id <ActionCall>)createActionCall: (func_t)fptr : arg1

• - (id <ActionCall>)createActionCall: (func_t)fptr : arg1 : arg2

• - (id <ActionCall>)createActionCall: (func_t)fptr : arg1 : arg2 : arg3

Activity

149

ActionCreatingForEach

Name
ActionCreatingForEach — Send a message to every item in target, which is assumed to be a
collection.

Description
The createActionForEach: messages define a message to be sent in the same way as the createActionTo
messages, but they assume that the object passed as the target argument is a collection object. They
specify that each object available from that collection, using the standard messages of the Collection
type in the collections library, is to receive the specified message.

Protocols adopted by ActionCreatingForEach
None

Methods

Phase: Using
• - (id <ActionForEach>)createActionForEach: target message: (SEL)aSel

• - (id <ActionForEach>)createActionForEach: target message: (SEL)aSel : arg1

• - (id <ActionForEach>)createActionForEach: target message: (SEL)aSel : arg1
: arg2

• - (id <ActionForEach>)createActionForEach: target message: (SEL)aSel : arg1
: arg2 : arg3

• - (id <ActionForEachHomogeneous>)createActionForEachHomogeneous: target
message: (SEL)aSel

Activity

150

ActionCreatingTo

Name
ActionCreatingTo — An action that sends a message to an object.

Description
A createActionTo: message specifies that the action to be performed is defined by an Objective C
message selector to be performed on a receiving object plus any required arguments. The message
selector is specified by the message: argument and the receiving object is specified as the first argument,
target.

Protocols adopted by ActionCreatingTo
None

Methods

Phase: Using
• - (id <ActionTo>)createActionTo: target message: (SEL)aSel

• - (id <ActionTo>)createActionTo: target message: (SEL)aSel : arg1

• - (id <ActionTo>)createActionTo: target message: (SEL)aSel : arg1 : arg2

• - (id <ActionTo>)createActionTo: target message: (SEL)aSel : arg1 : arg2 :

arg3

Examples
Example #1
[anActionGroup createActionTo: aTurtle message: M(move:) : obj];

Activity

151

ActionForEach

Name
ActionForEach — An action defined by sending a message to every member of a collection.

Description
An action defined by sending a message to every member of a collection.

Protocols adopted by ActionForEach
ActionTo (see page 155)

DefaultOrder (see page 167)

RETURNABLE (see page 66)

Methods
None

Activity

152

ActionForEachHomogeneous

Name
ActionForEachHomogeneous — Like ActionForEach, except that the collection must be
homogeneous.

Description
Like ActionForEach, except that the collection must be homogeneous.

Protocols adopted by ActionForEachHomogeneous
Action (see page 143)

ActionTarget (see page 154)

ActionSelector (see page 154)

DefaultOrder (see page 167)

RETURNABLE (see page 66)

Methods
None

Activity

153

ActionGroup

Name
ActionGroup — A collection of actions under total or partial order constraints.

Description
An action group is an action plan whose basic representation is a sequence of actions that have been
created within it.

An action group inherits its underlying representation from the OrderedSet type of the collections
library. All the members of the ordered set must consist only of actions that are created by one of the
createAction messages defined on ActionGroup itself. Once the actions are created, they may be
accessed or traversed using standard messages of the OrderedSet type.

The action objects are an integral, controlled component of the action plan in which they are created. If
they are removed from the action plan collection using a remove message, the only collection in which
they may be reinserted is the same collection from which they came. It is permissible, however, to
modify the base representation sequence by removing from one position and reinserting at another.

Protocols adopted by ActionGroup
CompoundAction (see page 162)

ActionCreating (see page 147)

DefaultOrder (see page 167)

CREATABLE (see page 44)

Methods
None

Activity

154

ActionSelector

Name
ActionSelector — Messages for actions involving a selector.

Description
Messages for actions involving a selector.

Protocols adopted by ActionSelector
None

Methods

Phase: Setting
• - (void)setMessageSelector: (SEL)aSel

Phase: Using
• - (SEL)getMessageSelector

ActionTarget

Name
ActionTarget — Messages common to actions that are sent to an object.

Description
Messages common to actions that are sent to an object.

Protocols adopted by ActionTarget
None

Methods

Phase: Creating
• - (void)setTarget: target

Phase: Using
• - getTarget

Activity

155

ActionTo

Name
ActionTo — An action defined by sending an Objective C message.

Description
An action defined by sending an Objective C message.

Protocols adopted by ActionTo
Action (see page 143)

ActionTarget (see page 154)

ActionSelector (see page 154)

ActionArgs (see page 144)

RETURNABLE (see page 66)

Methods
None

Activity

156

ActionType

Name
ActionType — Specification of an executable process.

Description
An action type is a type of process that may be initiated as a unit of execution by an external request. A
typical action has a well-defined duration determined by a fixed set of actions that execute within it.
Externally initiated interaction typically occurs only at the start or end of the overall process. A typical
action is executed in its entirety once an external request that initiates it has occurred. Some actions may
also have internal events that cannot begin or complete until other actions from a containing
environment have also begun or completed their execution. Such ordering constraints can be defined
either within an action type or as part of a dynamic context of execution.

Executable actions include both actions compiled in a host language (such as C functions or Objective C
messages) and compound actions built at runtime for interpretation by the Swarm abstract machine.

(.. For now, the only subtype of ActionType is CompoundAction. Types for compiled actions such as
functions and messages have not been defined yet. ..)

Protocols adopted by ActionType
None

Methods

Phase: Using
• - (id <Activity>)activateIn: (id <Swarm>)swarmContext

The activateIn: message is used to initialize a process for executing the
actions of an ActionType. This process is controlled by an object called
an Activity. The activateIn message initializes an activity to run under
the execution context passed as the swarmContext argument, and return the
activity object just created. If the execution context is nil, an activity
is returned that allows complete execution control by the caller.
Otherwise, the execution context must be either an instance of SwarmProcess
or SwarmActivity. (These objects are always maintained in one-to-one
association with each other, either one of the pair is equivalent to the
other as a swarmContext argument.)

If a top-level activity is created (swarmContext is nil), the created
activity may be processed using activity processing commands such as run,
step, etc. If an activity is created to run under a swarm context, the
swarm itself has responsibility for advancing the subactivity according to
its requirements for synchronization and control among all its activities.
Activating a plan for execution under a swarm turns over control to the
swarm to execute the subactivity as a more-or-less autonomous activity.

Activity

157

ActivationOrder

Name
ActivationOrder — Default type used as concurrent group of a swarm.

Description
Concurrent group to order merge by activation order within swarm.

Protocols adopted by ActivationOrder
ActionGroup (see page 153)

RETURNABLE (see page 66)

Methods

Phase: Using
• - remove: mergeAction

Method to remove concurrent merge action from sorted group

• - (void)addLast: mergeAction

Method to sort concurrent merge actions in the order of swarm activation.

Activity

158

Activity

Name
Activity — A level of processing by the interpreter of an action type.

Description
A object of type Activity implements the processing of actions within an action plan. Each subtype of
action plan has a corresponding subtype of Activity that implements processing of its respective type of
plan.

The Activity types are part of the virtual processing machinery of an action plan interpreter. All the
important elements of this machinery, including their current state of processing, are exposed to aid in
development of general-purpose tools such as debuggers. Except for applications that need to create and
run their own reflective activities, direct use of activity types by a modeling application should be rare.

A new activity object is created by each activateIn: message sent to an action type. activateIn: initializes
a new activity object and prepares it for processing, but does not itself execute any actions. Subsequent
messages, such as run, must be used to initiate processing within an activity. If an activity is activated to
run under a swarm context, the owning swarm itself controls all processing within the subactivity.

An Activity type holds a tree of currently running, or a potentially runnable, subactivities. Each activity
object represents a state of processing within a single action plan. The structure is a tree because
multiple activities could be running or eligible to run at the same time. This occurs whenever two
activities are specified as concurrent, either because are being performed by concurrent actions in some
other plan, or because they were started for autonomous execution under the same swarm. When parallel
processing machinery is present, each activity could also be advancing its own state independent of
those of any other activity.

The current implementation supports only a single serial processor. Under serial execution, only one
activity may be active at one time. This means that the current state of processing may be represented by
a single stack of current activities that traces a path to a single leaf of the runnable activity tree. When
running in serial mode, messages are available to obtain the currently running leaf activity or useful
context information such as the current time available from it.

Protocols adopted by Activity
DefinedObject (see page 52)

Drop (see page 54)

RETURNABLE (see page 66)

Methods

Phase: Using
• - (id <Activity>)getCurrentSubactivity

Get running subactivity or next subactivity to run.

Activity

159

• - (BOOL)getSerialMode

Return indicator for serial execution mode.

• - setSerialMode: (BOOL)serialMode

Set serial execution mode.

• - (id <ScheduleActivity>)getScheduleActivity

Return most immediately containing Schedule activity.

• - (id <SwarmActivity>)getSwarmActivity

Return most immediately containing Swarm activity.

• - (id <Activity>)getTopLevelActivity

Return top of activity tree running the local activity.

• - (id <Activity>)getControllingActivity

Return activity that issued current run request on top-level activity.

• - getSubactivities

Return set of subactivities pending to be run.

• - (id <Activity>)getOwnerActivity

Return activity under which this activity is running.

• - (void)setOwnerActivity: ownerActivity

Change owner from one swarm activity to another.

• - getActionType

Get action type of action being performed by activity.

• - (id <Action>)getAction

Get action containing parameter bindings for the local activity.

• - (id <Symbol>)getHoldType

The getHoldType returns a code for the particular hold constraint under
which an activity is currently holding (HoldStart or HoldEnd). It returns
nil if the basic status of the activity is not Holding.

(.. Currently no hold constraints other than merging within a swarm are
supported, and this message always returns nil.)

• - (id <Symbol>)getStatus

The getStatus message returns one of the following codes for the current
run status of a particular activity: Initialized, Running, Stopped,
Holding, Released, Terminated, Completed.

• - (id <Symbol>)stepAction

The step message executes a single action within a tree of activities.

• - (id <Symbol>)nextAction

The next executes actions within a single compound action while skipping
over all processing of any complete action plans executed by those actions.

• - (void)terminate

Activity

160

Terminate also stops a running tree of activities, but sets all activities
within the tree to a status of Completed whenever the tree is next run.
terminate may be used on either a running or stopped tree of activities.
It is the standard way to terminate schedule that is endlessly repeating
under the RepeatInterval option.

• - (void)stop

The stop message causes the a currently running tree of activities to stop
further processing and return a Stopped status.

• - (id <Symbol>)run

The run message continue processing of an activity from any state in which
its execution has been suspended. An error is raised if the activity is
already running. run returns either a Stopped or Completed status that the
activity has when it is no longer eligible to be run further.

ActivityIndex

Name
ActivityIndex — Additional methods used by indexes over activities.

Description
Additional methods used by indexes over activities.

Protocols adopted by ActivityIndex
Index (see page 108)

RETURNABLE (see page 66)

Methods

Phase: Using
• - (id <Action>)nextAction: (id *)status

• - (id <Symbol>)getHoldType

Activity

161

AutoDrop

Name
AutoDrop — Specify that an action is dropped after being processed.

Description
The AutoDrop option specifies that as soon as any action been processed by a running activity, the
action is removed from the plan and dropped so that it will never appear again. This option is useful for
plans that are created for a one-time use, never to be used again. This option is especially useful for a
dynamic schedule that continually receives new actions to be executed at future times, but will never
repeat actions that were previously scheduled. Depending on the underlying implementation of the
schedule, making sure the old actions get dropped using AutoDrop can considerably improve the
performance of the schedule.

When an option like AutoDrop is used, or whenever the contents of an action plan undergo a significant
amount of dynamic update, the action plan would ordinarily be intended only for a single point of use. If
AutoDrop is specified, a restriction against multiple active references is enforced. An error will be raised
if two activities ever attempt to process a plan with AutoDrop enabled at the same time.

Protocols adopted by AutoDrop
None

Methods

Phase: Creating
• - setAutoDrop: (BOOL)autoDrop

Phase: Using
• - (BOOL)getAutoDrop

Activity

162

CompoundAction

Name
CompoundAction — A collection of actions to be performed in any order consistent with a set of
ordering constraints.

Description
An compound action is the supertype of ActionGroup and Schedule. A compound action defines an
executable process that is composed from the execution of a set of actions in some defined order.

CompoundAction is not directly creatable. One of its subtypes must be created instead. ActionPlan
inherits the basic ability to be activated for execution from ActionType.

Protocols adopted by CompoundAction
ActionType (see page 156)

Collection (see page 103)

AutoDrop (see page 161)

DefaultOrder (see page 167)

Methods
None

Activity

163

ConcurrentGroup

Name
ConcurrentGroup — Default type used as concurrent group of a schedule.

Description
Default type used as concurrent group of a schedule.

Protocols adopted by ConcurrentGroup
ActionGroup (see page 153)

RETURNABLE (see page 66)

Methods

Phase: Using
• - _getEmptyActionConcurrent_

• - (void)_setActionConcurrent_: action

Activity

164

ConcurrentGroupType

Name
ConcurrentGroupType — Handle actions scheduled at same time value.

Description
The ConcurrentGroupType option is used to control handling of multiple actions which end up being
scheduled at the same time value. As far the schedule representation is concerned, these actions are
assumed by default to be concurrently executable, and the processing machinery is free to process them
as such if no ConcurrentGroupType option is specified.

If a different interpretation of actions at the same time step is needed, the ConcurrentGroupType option
may be specified. The argument of this option must be an object that when given a standard create:
message will return an object having all the structure of a standard ActionGroup object.

In addition to overriding the standard ActionGroup type, the concurrent group type may be implemented
by a custom subclass of the ActionGroup implementation which you supply yourself. A custom subclass
is free to implement custom rules for how to combine all the actions which happen to arrive at the same
time value. For example, it could decide that some actions are not to be executed at all, or it could create
entirely new actions to be executed instead of or in addition to those which were originally scheduled.

(.. Specific rules for writing a custom ActionGroup subclass will be documented at a future time, but all
the apparatus to do so is present today. A concurrent action group is currently used to maintain the
proper order of execution among subswarms of an owner swarm.)

Protocols adopted by ConcurrentGroupType
None

Methods

Phase: Setting
• - (void)setConcurrentGroupType: groupType

Phase: Using
• - getConcurrentGroupType

Activity

165

ConcurrentSchedule

Name
ConcurrentSchedule — Time-based map usable for concurrent group.

Description
Time-based map usable for concurrent group.

Protocols adopted by ConcurrentSchedule
ConcurrentGroup (see page 163)

Schedule (see page 173)

CREATABLE (see page 44)

Methods
None

Activity

166

DefaultOrder

Name
DefaultOrder — The DefaultOrder option indicates the ordering to be assumed among actions of
the plan when no other explicit ordering has been assigned.

Description
The DefaultOrder option indicates the ordering to be assumed among actions of the plan when no other
explicit ordering has been assigned. Beyond this initial ordering, additional ordering constraints can be
added selectively using partial order specifications on individual actions. (.. Partial order order
constraints are not yet implemented.)

The value for DefaultOrder is a symbol that may have one of the following values: Concurrent,
Sequential, Randomized;

The Concurrent value of the DefaultOrder option indicates that can actions be run in any order
(including at the same time, if hardware and software to do this is available) without no impact on the
net outcome of the actions. The claim that action results are independent of their execution order gives
the processing machinery explicit leeway to execute them in any order it chooses. In the current
implementation on a single, serial processor, actions are always processed sequentially even if marked
concurrent, because that is the only way they can be. In future versions, however, special runtime
processing modes may be defined even for a serial processor, which would mix up execution order just
to confirm the independence of model results.

The Sequential value for the DefaultOrder option is the default. It specifies that the actions must always
be executed in the same order as they occur in the plan. This order is ordinarily the same order in which
actions are first created in the plan, unless actions are explicitly added elsewhere the collection that
underlies a plan. This option is always the safest to assure predictability of results, but it excludes the
ability to run the actions in parallel. To better understand and document a model design, it is worth
annotating action plans with an explicit indication as to whether they do or do not depend on a
Sequential order.

The Randomized value for the DefaultOrder option specifies that the model results do depend on
execution order, but that the order in which the actions were created or added has no special
significance. Instead, the method of dealing with order dependence is to generate a random order each
time a collection of same-time actions is processed. The random order will be generated from an random
number generator internal to the processing machinery.

Protocols adopted by DefaultOrder
None

Methods

Phase: Setting
• - setDefaultOrder: (id <Symbol>)aSymbol

Activity

167

Phase: Using
• - (id <Symbol>)getDefaultOrder

FAction

Name
FAction — An action defined by sending a FCall.

Description
An action defined by sending a FCall.

Protocols adopted by FAction
Action (see page 143)

RETURNABLE (see page 66)

Methods

Phase: Creating
• - setCall: fcall

Phase: Setting
• - setAutoDrop: (BOOL)autoDrop

FActionCreating

Name
FActionCreating — An action that calls a FCall.

Description
The createFAction: message creates an action that runs a FCall closure.

Protocols adopted by FActionCreating
None

Methods

Phase: Using
• - (id <FAction>)createFAction: (id <FCall>)call

Activity

168

FActionCreatingForEachHeterogeneous

Name
FActionCreatingForEachHeterogeneous — Invoke a FCall for every item in the target
collection, which can include objects of various types.

Description
Invoke a FCall for every item in the target collection, which can include objects of various types.

Protocols adopted by FActionCreatingForEachHeterogeneous
None

Methods

Phase: Using
• - (id <FActionForEachHeterogeneous>)createFActionForEachHeterogeneous:
target call: (id <FCall>)call

FActionCreatingForEachHomogeneous

Name
FActionCreatingForEachHomogeneous — Invoke a FCall for every item in the target
collection. All members must be of the same type.

Description
Invoke a FCall for every item in the target collection. All members must be of the same type.

Protocols adopted by FActionCreatingForEachHomogeneous
None

Methods

Phase: Using
• - (id <FActionForEachHomogeneous>)createFActionForEachHomogeneous: target
call: (id <FCall>)call

Activity

169

FActionForEach

Name
FActionForEach — Base protocol for FActionForEach{Homogeneous,Heterogeneous}.

Description
Base protocol for FActionForEach{Homogeneous,Heterogeneous}.

Protocols adopted by FActionForEach
FAction (see page 167)

ActionTarget (see page 154)

DefaultOrder (see page 167)

Methods
None

FActionForEachHeterogeneous

Name
FActionForEachHeterogeneous — An action defined by applying a FAction to every member
of a collection.

Description
An action defined by applying a FAction to every member of a collection.

Protocols adopted by FActionForEachHeterogeneous
FActionForEach (see page 169)

RETURNABLE (see page 66)

Methods
None

Activity

170

FActionForEachHomogeneous

Name
FActionForEachHomogeneous — An action defined by applying a FAction to every member of a
collection All members of the collection must be of the same type.

Description
An action defined by applying a FAction to every member of a collection. All members of the collection
must be of the same type.

Protocols adopted by FActionForEachHomogeneous
FActionForEach (see page 169)

RETURNABLE (see page 66)

Methods
None

ForEachActivity

Name
ForEachActivity — State of execution within a ForEach action.

Description
State of execution within a ForEach action.

Protocols adopted by ForEachActivity
Activity (see page 158)

RETURNABLE (see page 66)

Methods

Phase: Using
• - getCurrentMember

Activity

171

GetSubactivityAction

Name
GetSubactivityAction — Declare an internal method for getCurrentAction().

Description
Declare an internal method for getCurrentAction().

Protocols adopted by GetSubactivityAction
None

Methods

Phase: Using
• - _getSubactivityAction_

RelativeTime

Name
RelativeTime — Specifies that time is relative to when the schedule started.

Description
The RelativeTime option specifies that all the times in the schedule are relative to the time when
processing of the entire schedule begins. Otherwise, the times are assumed to be absolute times, with
their base in the starting time of the entire model.

Protocols adopted by RelativeTime
None

Methods

Phase: Setting
• - setRelativeTime: (BOOL)relativeTime

Phase: Using
• - (BOOL)getRelativeTime

Activity

172

RepeatInterval

Name
RepeatInterval — Reschedule actions after a period of time.

Description
The RepeatInterval option specifies that as soon as all actions in the schedule have completed, it is to be
rescheduled at a time computed as the time at which the schedule was last started, plus the value
specified as the RepeatInterval argument. This option overrides the normal default that times are
considered absolute, as if the RelativeTime option had also been specified at the same time. All
scheduled times must be less than the specified repeat interval, or an error will be raised. The
RepeatInterval option can continue to be reassigned to different values after a schedule has been created,
but the interval value must always be greater than the scheduled times of any actions which it contains.
(.. This option is currently supported only on schedule, not swarms.)

Protocols adopted by RepeatInterval
None

Methods

Phase: Setting
• - setRepeatInterval: (timeval_t)repeatInterval

Phase: Using
• - (timeval_t)getRepeatInterval

Activity

173

Schedule

Name
Schedule — A collection of actions ordered by time values.

Description
A schedule is compound action whose basic representation is a sorted Map of actions that have been
created within it. The key value associated with each of these actions is an unsigned integer value for
which the typedef timeval_t is supplied.

A schedule inherits its underlying representation from the Map type of the collections library. All the
members of the ordered set must consist only of actions that are created by one of the createAction
messages defined on Schedule itself. Once the actions are created, they may be accessed or traversed
using standard messages of the Map type. The key values of this collection, however, must be cast to
and from the id type defined for key values by the Map type.

The messages to create actions within a schedule are essentially the same as those for ActionGroup,
except for the presence of an initial at: argument indicating the time at which an action is to be
performed. Except for the time associated with each action, meaning of the createAction messages is the
same as for ActionGroup.

When multiple actions are all scheduled at the same time, they are all inserted into a concurrent action
group created for that time value. The ConcurrentGroupType option may be used to override the default
action group for these concurrent actions by a custom user-defined subclass. (.. Details of doing this are
not yet documented, but there are examples.)

Protocols adopted by Schedule
Map (see page 119)

CompoundAction (see page 162)

ActionCreating (see page 147)

RelativeTime (see page 171)

RepeatInterval (see page 172)

ConcurrentGroupType (see page 164)

SingletonGroups (see page 176)

CREATABLE (see page 44)

Methods

Phase: Creating

Activity

174

• - setKeepEmptyFlag: (BOOL)keepEmptyFlag

Indicate whether an empty schedule should be dropped and ignored or or
kept and attended to (default is YES).

• + create: (id <Zone>)aZone setAutoDrop: (BOOL)autoDrop

Convenience method for creating an AutoDrop Schedule

• + create: (id <Zone>)aZone setRepeatInterval: (timeval_t)rptInterval

Convenience method for creating a repeating Schedule

Phase: Using
• - (id <ActionGroup>)insertGroup: (timeval_t)tVal

• - remove: anAction

Remove action from either schedule or concurrent group.

• - (id <FActionForEachHomogeneous>)at: (timeval_t)tVal
createFActionForEachHomogeneous: target call: (id <FCall>)call

• - (id <FActionForEachHeterogeneous>)at: (timeval_t)tVal
createFActionForEachHeterogeneous: target call: (id <FCall>)call

• - (id <ActionForEach>)at: (timeval_t)tVal createActionForEach: target
message: (SEL)aSel

• - (id <ActionForEach>)at: (timeval_t)tVal createActionForEach: target
message: (SEL)aSel : arg1

• - (id <ActionForEach>)at: (timeval_t)tVal createActionForEach: target
message: (SEL)aSel : arg1 : arg2

• - (id <ActionForEach>)at: (timeval_t)tVal createActionForEach: target
message: (SEL)aSel : arg1 : arg2 : arg3

• - (id <ActionForEachHomogeneous>)at: (timeval_t)tVal
createActionForEachHomogeneous: target message: (SEL)aSel

• - (id <ActionTo>)at: (timeval_t)tVal createActionTo: target message:

(SEL)aSel

• - (id <ActionTo>)at: (timeval_t)tVal createActionTo: target message:
(SEL)aSel : arg1

• - (id <ActionTo>)at: (timeval_t)tVal createActionTo: target message:
(SEL)aSel : arg1 : arg2

• - (id <ActionTo>)at: (timeval_t)tVal createActionTo: target message:
(SEL)aSel : arg1 : arg2 : arg3

• - (id <ActionCall>)at: (timeval_t)tVal createActionCall: (func_t)fptr

• - (id <ActionCall>)at: (timeval_t)tVal createActionCall: (func_t)fptr :

arg1

• - (id <ActionCall>)at: (timeval_t)tVal createActionCall: (func_t)fptr :
arg1 : arg2

• - (id <ActionCall>)at: (timeval_t)tVal createActionCall: (func_t)fptr :
arg1 : arg2 : arg3

Activity

175

• - (id <FAction>)at: (timeval_t)tVal createFAction: (id <FCall>)call

• - at: (timeval_t)tVal createAction: anActionType

ScheduleActivity

Name
ScheduleActivity — State of execution within a Schedule.

Description
State of execution within a Schedule.

Protocols adopted by ScheduleActivity
Activity (see page 158)

RETURNABLE (see page 66)

Methods

Phase: Using
• - stepUntil: (timeval_t)tVal

Advance activity until requested time has been reached.

• - (timeval_t)getCurrentTime

Get current time of activity (pending time if holding).

Activity

176

SingletonGroups

Name
SingletonGroups — Indicates that an action group should be created for every time value which is
present.

Description
The SingletonGroups option indicates that an action group should be created for every time value which
is present, even when only a single action is present at the time value.

Ordinarily, a concurrent action group is created to process actions at the same timestep only if more than
one action is scheduled at that timestep. The overhead of these action groups is relatively low, because it
just creates a single new object to which actions are directly linked, but it is still faster to avoid creating
them if only one action is present at a timestep. If a custom subclass is being provided however, it may
need to examine the actions at a timestep even if there is only one.

Protocols adopted by SingletonGroups
None

Methods

Phase: Setting
• - (void)setSingletonGroups: (BOOL)singletonGroups

Phase: Using
• - (BOOL)getSingletonGroups

Activity

177

SwarmActivity

Name
SwarmActivity — A collection of started subactivities.

Description
A collection of started subactivities.

Protocols adopted by SwarmActivity
ScheduleActivity (see page 175)

RETURNABLE (see page 66)

Methods

Phase: Using
• - (id <Schedule>)getSynchronizationSchedule

• - getSwarm

Return swarm object containing this swarm activity, if any.

Activity

178

SwarmProcess

Name
SwarmProcess — An object that holds a collection of concurrent subprocesses.

Description
SwarmProcess inherits the messages of both ActionType and Zone. Inheritance of zone behavior means
that a swarm can be used as the argument of a create: or createBegin: message, for creation of an object
within the internal zone of a swarm.

Unlike other action types, swarms and swarm activities always exist in a one-to-one relationship,
provided that the swarm has been activated. This restriction to a single activity enables the swarm to do
double-duty as a custom object that provides its own interface to the activities running within the swarm.

Protocols adopted by SwarmProcess
ActionType (see page 156)

Zone (see page 76)

SynchronizationType (see page 179)

Methods

Phase: Creating
• - setInternalZoneType: aZoneType

The InternalZoneType option sets the type of zone which is created by the
swarm to hold objects created within the swarm. If set to nil, no internal
zone is created within the swarm, and all use of the swarm as if it were a
zone raises an error. The default of this option is standard Zone type.
(.. Since there is no other Zone type yet, there's no reason to set this
option yet except to turn off the internal zone. ..)

Phase: Using
• - (id <SwarmActivity>)getActivity

getActivity returns the activity which is currently running of
subactivities within the swarm. This activity is the same as the value
returned by activateIn: when the swarm was first activated. It returns nil
if the swarm has not yet been activated.

• - getInternalZone

getInternalZone returns a Zone object that is used by the swarm to hold
its internal objects. Even though the swarm itself inherits from Zone and
can be used as a Zone for nearly all purposes, this message is also
provided so that the zone itself can be obtained independent of all zone
behavior.

Activity

179

SynchronizationType

Name
SynchronizationType — Synchronization type sets the type of schedule which is used internally
by the swarm to synchronize subschedules.

Description
Synchronization type sets the type of schedule which is used internally by the swarm to synchronize
subschedules. Its default is a schedule with a concurrent group of ActivationOrder.

The default value for the SynchronizationType option is not a generic action group, but a special
predefined subtype of ActionGroup called ActivationOrder. This concurrent group type guarantees that
actions scheduled to occur at the same time from different action plans running in the same swarm are
executed in the same order in which the action plans were first activated.

Protocols adopted by SynchronizationType
None

Methods

Phase: Creating
• - (void)setSynchronizationType: aScheduleType

Phase: Using
• - getSynchronizationType

Activity

180

General

Name
activity — Processing control over all levels of Swarm execution

Description
The activity library is responsible for scheduling actions to occur within a simulated world, and for
making these actions actually happen at the right time in the right order. It provides the foundation of
dynamic, object-oriented simulation within Swarm.

Actions consist of messages to objects, calls to functions, or groups of actions in some defined order.
The activity library guarantees that all these actions, and the state changes they produce, occur at
predictable points in time. Time is defined by the relative order of actions, and may also be indexed by
the discrete values of a world clock.

Macros
• COMPLETEDP(status)

• DEFINED_timeval_t
• HOLDINGP(status)

• INITIALIZEDP(status)

• RELEASEDP(status)

• RUNNINGP(status)

• STOPPEDP(status)

• TERMINATEDP(status)

• getCurrentAction()

• getCurrentActivity()

• getCurrentOwnerActivity()

• getCurrentSchedule()

• getCurrentScheduleActivity()

• getCurrentSwarm()

• getCurrentSwarmActivity()

• getCurrentTime()

Macro to get the time of the current activity - only valid when an
activity is actually running. Returns a (timeval_t).

• getTopLevelActivity()

Macro to get id of the current topLevelActivity - only valid when an
activity is actually running.

Activity

181

Functions
• id _activity_context_error(const char *macroName)

Internal error message issued when a current activity is missing.

Typedefs
• timeval_t unsigned long

Globals
id <Symbol> Initialized

 Values returned by getStatus.
id <Symbol> Running

 Values returned by getStatus.
id <Symbol> Holding

 Values returned by getStatus.
id <Symbol> Released

 Values returned by getStatus.
id <Symbol> Stopped

 Values returned by getStatus.
id <Symbol> Terminated

 Values returned by getStatus.
id <Symbol> Completed

 Values returned by getStatus.
id <Symbol> Concurrent

 values for DefaultOrder
id <Symbol> Sequential

 values for DefaultOrder
id <Symbol> Randomized

 values for DefaultOrder
id <Symbol> HoldStart

 Values returned by getHoldType.
id <Symbol> HoldEnd

 Values returned by getHoldType.
id _activity_current

 Internal variable used by current context macros.
id <Error> InvalidSwarmZone

 Error issued when an internal zone is expected, but absent.
id _activity_zone

 _activity_zone -- zone in which activity objects created
BOOL (*) (id) _activity_trace

Activity

182

 trace function for activity execution global variable for function to be called on every change in the
activity tree Note: support for any specific form of this trace facility is not guaranteed in future
versions. Some form of trace facility will remain for debug purposes, however, at least until a full
form of event history logging has been implemented as an integral part of the Activity type.

Objectbase Library
Overview

The objectbase library encapsulates various fundamental aspects of the Swarm object model and
defines the probing machinery used to take data from Swarm objects. Most of the underlying
functionality of the classes defined here is contained in the Defobj Library (see page 26) and Activity
Library (see page 133) libraries.

Probes. Probes are idealized entities that are intended to allow the user to monitor and modify the
innards of objects without explicitly providing the functionality to do so at compile time. Hence, they
allow dynamic interaction with an objects instance variables and methods. Most of the functionality of
probes is implemented here; but, at present, they are intimately linked to the Simtoolsgui Library (see
page 291) library, which contains all the widgetry needed to use probes from a GUI. Despite this
intimacy, probes are intended to be a general purpose mechanism for any agent or device to interact
dynamically with Swarm objects. The Probes section in the Swarm User Guide (http://www.swarm.org)
will explain more about the reasoning and purpose behind probes.

1. Dependencies
Following are the other header files imported by <objectbase.h>:

#import <defobj.h>
#import <activity.h>

 The defobj library interface is included to provide the basic object support.

2. Compatibility
• 1.0.4 => 1.0.5. No changes.

• 1.0.3 => 1.0.4. The name of this library is now objectbase, it is has been renamed from
swarmobject largely to reflect the more generic nature of the library and also motivated by the
impending port of Swarm to Windows NT (to avoid filename conflicts with the SwarmObject class).
There should be little, or no effect on the user, the only visible change is the fact that the actual library
(.a) or (.so) file will now have a different name and the header file name has changed. A symbolic link
from objectbase.h to swarmobject.h has been provided in the distribution, to ensure backwards
compatibility, however, users should not continue to rely on this being so. Users should port
references to swarmobject.h in their code to objectbase.h, because this symlink will be removed
in a future release.

Note: this is no way affects the SwarmObject class which remains the same as in all previous releases.

• 1.0.0 => 1.0.1. The interface has changed again! EmptyProbeMap is now a subclass of
CustomProbeMap, which is subclassed from ProbeMap. And a shortcut create: method was added
to that branch.

Also, a new method was added to ProbeLibrary called isProbeMapDefinedFor that serves to non-invasively test
for the existence of a ProbeMap for a given class.

• Beta => 1.0.0. The new interface for the swarmobject library might cause some problems for apps
that worked under the Beta release of Swarm. To get the whole scoop, read the Library Interface
Conventions (see page 406).

3. Usage Guide

3.1. Overview
The objectbase library contains the most basic objects users need to design their agents and swarms. It
also serves, at present, as a repository for the probe machinery, which is provided for every
SwarmObject. The way the classes in this library are to be used is varied. But, basically, it is provided so
that the user will have something to subclass from for her own objects and Swarms.

3.2. Example Usage of SwarmObject
The best way to explain how the library should be used is to walk through an example. So, using
Heatbugs, we'll walk through the ways objectbase is used and discuss them. Since more documentation
is usually better than less, I'm going to explain things at a low level so that those not familiar with
Objective C will understand the discussion. If you already are familiar with Objective C, then you
should skip this part.

First off, the basic elements of the Heatbugs simulation are the heatbugs, the model swarm (which
bundles the heatbugs), and the observer swarm (which bundles the displays of the probes poking into the
model swarm and the heatbugs). The interface files for each show what must be imported and the
declaration syntax needed to subclass from SwarmObject.

We'll use Heatbug.h for our discussion here. The first part of the file shows the C-preprocessor imports
needed:

#import <objectbase/SwarmObject.h>

#import <space.h>
#import "HeatSpace.h"
#import <tkobjc/Raster.h>

The #import <objectbase/SwarmObject.h>; is included in order to subclass from SwarmObject.
However, to provide backwards compatibility, we've placed this import in the library interface file
objectbase.h as well, which means one could subclass from SwarmObject by simply importing the
objectbase.h file. This is discouraged in order to make the library interfaces as standard as possible.

The next objectbase relevant piece of code in this file is:

@interface Heatbug: SwarmObject

{
double unhappiness;
int x, y;
HeatValue idealTemperature;
HeatValue outputHeat;
float randomMoveProbability;

Grid2d * world;
int worldXSize, worldYSize;
HeatSpace * heat;
Color bugColor;

}

The @interface keyword indicates that you are beginning the definition of the part of an object (a
Heatbug in this case) that will be visible to other objects. The Heatbug: SwarmObject indicates that
you are calling this object Heatbug and it is a subclass of SwarmObject. What follows between the curly
braces ({}) are the instance variables defined for the Heatbug class above and beyond those inherited
from the SwarmObject class.

Inside this "agent," we have defined several parameters associated with either the agent, itself, or the
space in which it sits. Any data that will need to be present throughout all the behavior and lifetime of
the agent should be declared here. Also, anything declared here will be accessible to the probe
machinery, and so will be capable of being manipulated and viewed from outside the agent.

Next come the message prototypes to which this agent will respond. And it is worth noting again that
these are in addition to those declared in the SwarmObject superclass. So, not only will other objects be
able to send messages to this agent that are declared here, but other objects will be able to send all the
messages declared in the objectbase/SwarmObject.h imported previously. The messages
prototyped here will dictate what the compiler thinks this object can respond to. Hence, if any part of
any of these prototypes differs from the corresponding function definition in the Heatbug.m file, then
the compiler will say something like Object: aHeatbug does not respond to xyz, where "xyz"
is the name of the message that is being sent to the Heatbug. A script is provided with the Swarm
distribution that fixes header file prototypes to match the message declarations in the corresponding ".m"
file. This script should be in the $SWARMHOME/bin directory and is called m2h.

One more thing to notice about these prototypes is that some of them are duplicates of what appears in
the objectbase/SwarmObject.h file. This means that when the message is called on a Heatbug
object, it will execute the method defined here and not the one in the SwarmObject class. In the
objectbase library, the following messages are intended to be overridden, as necessry: create:,
createBegin:, createEnd, customizeBegin:, customizeEnd, customizeCopy:,

describe:, and getInstanceName. Each of these messages do specific things that may change
from subclass to subclass of SwarmObject. In this case, however, we're only overriding createEnd.
The differences between we implement it in Heatbugs and the default is not that significant. But, it
should be pointed out that when overriding certain messages, like createBegin: and createEnd, the
new method should call the superclass' version of the message, as well. This is done using the default
pointer to the superclass, designated super. The syntax in the Heatbugs case is:

[super createEnd];

The reasons for doing this are related to the object phase protocols used by defobj. If you would like
more info on that, see the Swarm User Guide (http://www.swarm.org) .

Finally, the @end keyword signifies the end of the interface definition. GNU Objective C allows one to
leave this off; but, it is not good practice.

And that's it. Of course, there're a few tricky aspects to using the objectbase library that weren't
mentioned here. Some of them will be mentioned in the Advanced Usage Guide (see page 190) and the
Implementation Notes (see page 190); but, the best way to learn is to examine the way the demo
applications do it and try to make some changes yourself.

3.3. Subclassing from Swarm
Subclassing from the Swarm class works very similar to subclassing from SwarmObject.

3.4. ActivityControl
The ActivityControl object provides much more finely grained control over the execution of an
interactive simulation. It addresses both the problems of not being able to stop the simulation at any
given point in any given activity and provides an initial step towards a Swarm debugger.

An activity controller can be attached to any activity that is created in a Swarm simulation, including
those that are created for use only by the Swarm kernel. The controller then provides the basic activity
manipulation messages on that activity, which are: run, stop, next, step, stepUntil, and
terminate.

The presence of the ActivityControl object might cause some confusion about what role the
ControlPanel should play in the controlled execution of the various schedules. The ControlPanel should
still be used for the top-level control of any simulation that is running in a context where random
interference is expected (like under a GUISwarm where the user may click a button at any time). The
reason this is true is because the ControlPanel sends pseudo-interrupts to the infinite loop we use to
perpetuate execution of the top level Swarm (which can only be seen in the form of the go message on a
GUISwarm at present). This type of control may change in the future! But, for now, it is how we monitor
the control state of the simulation.

Now, having said that, the ControlPanel should no longer be used to run the simulation. It should only
be used to instantiate the control context and quit the entire simulation. That means that sometime in the
future, the Go and the Stop buttons will be removed from the ControlPanel display. They have been left
in for backwards compatibility so that applications that do not use the new ActivityControl will retain
their (albeit handicapped) controllability. Also, the current Time Step button will be renamed to Start
to be consistent with it's new purpose.

In order to use the new control mechanism, you must place code like the following in the top-level
Swarm. (This code was taken from a modified mousetrap demo app.)

observerActCont = [ActivityControl createBegin: [self getZone]];

observerActCont = [observerActCont createEnd];
[observerActCont attachToActivity: [self getSwarmActivity]];
[probeDisplayManager createProbeDisplayFor: observerActCont];

This creates an ActivityControl and attaches it to the top-level activity (in this case an
observerSwarm). It also creates a display for the controller. (The probe map for the ActivityControl
class is designed within the ActivityControl, itself. This is done because all of these objects are expected
to look the same to any outside object.) With this activity controller, you will then be able to run,
stop, next, step, stepUntil, and terminate that activity.

There are some tricky aspects to successfully using an ActivityControl object that the Advanced Usage
Guide (see page 190) will cover.

4. Advanced Usage Guide

4.1. ProbeMap design
When designing a ProbeMap for a given (subclass of) SwarmObject, inclusion of instance variables or
messages defined in the super class might be desirable. The normal ProbeMap design code might look
like (this code was taken from the tutorial app called "hello-world"):

probeMap = [CustomProbeMap createBegin: [self getZone]];
[probeMap setProbedClass: [person class]];
probeMap = [probeMap createEnd];
[probeMap addProbe: [probeLibrary getProbeForVariable: "room"

inClass: [person class]]];
[probeMap addProbe: [probeLibrary getProbeForVariable: "party"

inClass: [person class]]];
[probeMap addProbe: [probeLibrary getProbeForVariable: "name"

inClass: [person class]]];
[probeMap addProbe: [probeLibrary getProbeForVariable: "stillhere"

inClass: [person class]]];
[probeMap addProbe: [probeLibrary getProbeForVariable: "listOfFriends"

inClass: [person class]]];
[probeMap addProbe: [probeLibrary getProbeForVariable: "myColor"

inClass: [person class]]];
[probeLibrary setProbeMap: probeMap For: [person class]];
[probeDisplayManager createProbeDisplayFor: person];

where room, party, name, stillhere, listOfFriends, and myColor are instance variables
declared in the interface to the Person subclass. And Person is a subclass of Agent2d, which is a
subclass of SwarmObject.

Now let's say that there are two variables declared in Agent2d that you want to put into this custom
probe in addition to the ones you've picked out of Person. Call them x and y. The way to add them to
the probeMap is to add the following two lines of code to the above.

[probeMap addProbe: [probeLibrary getProbeForVariable: "x"
inClass: [Agent2d class]]];

[probeMap addProbe: [probeLibrary getProbeForVariable: "y"
inClass: [Agent2d class]]];

And that's it! The two superclass-declared variables, which are, in fact, instance variables of the instance
of the subclass, are now included in the probe.

In addition, a convenience message has been added to the CustomProbeMap interface to compress the
above rather cluttered mechanism into one message. This convenience message can be used in the usual
case where a ProbeMap will consist of variables and messages from the same class. For example, the
first part of the custom probe creation above can be shortened to:

probeMap = [CustomProbeMap create: [self getZone] forClass: [person class]
withIdentifiers: "room", "party", "name", "stillhere",

"listOfFriends", "myColor", NULL];

 And if the user wanted messages in the probe as well, it could be extended to:

probeMap = [CustomProbeMap create: [self getZone]

forClass: [person class]
withIdentifiers: "room", "party", "name",

"stillhere", "listOfFriends", "myColor",
":",
"setWorld:Room:Party:",
"setPerson:Topic_array:ShowSpeech:",
NULL];

At present, this message doesn't search the superclasses for the message names listed here. But, that will
soon be rectified.

4.2. ActivityControl Issues
It is completely reasonable to assume that explicit control can be had over all the activities in a
simulation. However, at present, this control is limited because the context in which an activity runs
determines how it behaves. To understand how an ActivityControl is to be used, we will have to explore
the behavior of activities in context. (For a more complete explanation of the behavior of activities, see
the Activity Library (see page 133) documentation.)

There are two ways to get an activity started, one can activate the activity in nil or in some other
activity. So called "top-level" activities are activated in nil and are intended to be independent of the
sophisticated scheduling activity that dictates the execution of actions in any other context in the
simulation. I.e. the only activities that should be activated in nil are those sets of events that are
expected to preserve the same behavior no matter what goes on in any other part of the simulation.

The other type of activity, those activated in some other activity, is intended to be an integral part of its
owner activity. However, this doesn't mean that it must depend on the outcome of actions happening in
the owner activity. In fact, an ActionPlan can be designated as containing actions that are capable of
being processed in parallel, via code like the following:

[anActionPlan setDefaultOrder: Concurrent];

 But these activities are still intended to be meshed with their owner activities. In other words, they are
part and parcel of the same model or simulation.

Now, the operational effect of activating an activity in nil is that it will not be meshed with the rest of
the Swarm activity structure. This gives the user (or process) complete control over the execution of that
activity. A run on that activity will run either to completion or until a stop flag is set by a sequence of
events purely internal to that activity. Or, one can stop it from the outside with a message from
something like an ActivityControl.

What all this means is that, while one can attach an ActivityControl to any activity, only the "top-level"
activities (those having been activated in nil) are going to respond well to it. Any sub-activity will
respond half-heartedly, if at all. For example, in the Mousetrap demo distributed with Swarm, an
ActivityControl has been placed on both the ObserverSwarm and the ModelSwarm activities. Now, if
one sends a run message to the ActivityControl that is attached to the observerSwarm's activity, the
entire model continues to run to completion, unless the user sends a stop message. However, if the sim
is stopped at some point, a run message to the modelSwarm's activity will have no effect at all. (Note: If
you do this via the activity controllers, you see the currentTime variable get updated; but, the actual
run message to the activity, itself, has no effect.)

So, the rule of thumb, for the present, is to attach ActivityControl objects only to "top-level" activities,
like the ObserverSwarm.

5. Subclassing Reference
The main classes defined here that are intended to be subclassed by users are Swarm and SwarmObject.
The probing functionality provided here is mainly for use within the Swarm kernel. However, this probe
machinery should be used when designing any interface between Swarm and any other agent or device.

SwarmObject. SwarmObject is the base class for all interactive agents in Swarm. It defines the standard
behavior for Swarmstyle agents, which includes hooks for creation, probing, zoned memory allocation,
and destruction.

Swarm. The Swarm class encapsulates all of the abstract execution machinery in the activity library, as
well as the notion of a group of related objects. Metaphorically, a "Swarm" is a combination of a
collection of objects and a schedule of activity over those objects. Hence, the Swarm class provides the
behavior necessary for creating such an object and starting up the schedule.

Further details on subclassing are also described in the Usage Guide (see page 190)

6. Interface Design Notes
Unfortunately, this interface has not undergone a rigorous design review. As such it is subject to change
in the future. However, there are rumours that this library will be integrated into the Defobj Library (see
page 26) anyway. So, even though little thought was given to the design of this interface (and it is not
likely to be worthwhile designing a robust interface at this time), it was implemented in order to provide
a first step towards bringing all the various libraries in line with the standard set by defobj.

Along these lines, a few notes are relevant.

1. Probes may become an inherent part of any object.

2. ActivityControls will become a part of a larger set of tools used for debugging Swarm models.

7. Implementation Notes
1. Right now, Probe's rely on a special method, getInstanceName, that has to be implemented in

any probe-able object in order to get anything other than the class name of that object into the
object designation widget. However, a more general capability has been added to defobj to give a
meaningful name to any object. Probes will be changed to take advantage of this new capability.

2. In the ActivityControl the frequency of the message updateStateVar is very high. It is sent at
least once every cycle and every time a message is sent to the ActivityControl. This is
unsatisfactory. Some of these messages can be pruned out of the object.

3. The probeMap designed for use with an ActivityControl was chosen fairly arbitrarily. Right now,
it serves as a default for the class. A user can override it by designing a new one and inserting it
into the probeLibrary.

4. Errors specific to objects in the objectbase library need to be gathered and initialized like those in
the defobj library.

Documentation and Implementation Status

Revision History
2001-11-27 objectbase.h alex

 (setNonInteractive): Fix doc string to not use an ampersand between `drag' and `drop', can confuse some XML
processors.

2001-01-28 objectbase.h mgd

 (val_t): Remove. (Moved to defobj.h.) (ProbeMap): Add setProbedObject:.

2001-01-27 objectbase.h mgd

 (val_t): Change type to fcall_type_t.

2000-10-14 objectbase.h mgd

 (ProbeMap): Make argument to addProbe: id <Probe>. (ProbeLibrary): Make first argument to setProbeMap:For: id
<ProbeMap>.

2000-07-02 objectbase.h mgd

 (ProbeMap): Change return type on begin: to Index.

2000-05-18 objectbase.h mgd

 ([Swarm -activateIn:]): Hide in a #ifndef IDL.

2000-04-27 objectbase.h mgd

 ([VarProbe -createEnd]): Remove. ([ProbeMap -getProbeForVariable:, -getProbeForMessage:]): Remove.

2000-03-28 mgd

 Swarmdocs 2.1.1 frozen.

2000-03-28 objectbase.h mgd

 Declare terminate and getActivity. Accomodate changes above.

2000-02-29 mgd

 Swarmdocs 2.1 frozen.

2000-02-17 objectbase.h mgd

 (ActivityControl): Remove terminateActivity.

2000-02-15 objectbase00.sgml alex

 Remove LINK to probe APPENDIX, refer reader to Swarm User Guide.

1999-08-25 objectbase.h mgd

 (VarProbe): Declare DefaultString, CharString, IntString.

1999-08-23 objectbase.h mgd

 Add VarProbe, MessageProbe, and ProbeMap typing.

1999-08-22 objectbase.h mgd

 Add Zone typing to +create:* methods. (Swarm): Return Activity with activateIn:

1999-08-09 objectbase.h alex

 (EmptyProbeMap): Add +create:forClass: convenience create message to protocol.

1999-08-08 objectbase.h alex

 (ActivityControl): Move -attachToActivity: to USING phase, doesn't need to be a CREATING phase method.

1999-07-15 objectbase.h alex

 (CustomProbeMap): Document existing methods. Add new SETTING method
(addProbesForClass:withIdentifiers:) which allows post-create time addition of variables and method names via the
list-delimiter form.

1999-05-29 objectbase.h mgd

 Include externvar.h.

1999-05-28 objectbase.h mgd

 Use `externvar' for external variables.

1999-04-29 objectbase.h mgd

 (MessageProbe), MessageProbe.[hm] ([MessageProbe -longDynamicCallOn:]): Replaces intDynamicCallOn:

1999-04-22 objectbase.h mgd

 (MessageProbe): Add setting tag.

1999-04-16 objectbase.h mgd

 (val_t): Use types_t instead of included union.

1999-04-07 objectbase00.sgml alex

 Fixed erroneous example code that referred to the global probeLibrary instance rather than the intended
CustomProbeMap instance. Thanks to Albert-Jan Brouwer <ajbrouw@casema.net> for reporting this.

1999-04-01 objectbase.h vjojic

 Protocol Swarm inherits protocols SwarmProcess and CREATABLE.

1999-03-21 objectbase.h mgd

 Make SwarmObject creatable.

1999-03-20 objectbase.h mgd

 Add @class DefaultProbeMap.

1999-03-08 objectbase.h mgd

 Fix return type of getArg: (val_t), and correct documentation for getArg: and getArgName:.

1999-02-26 objectbase.h mgd

 Add CREATABLE tags to all non-abstract protocols.

1999-02-23 objectbase.h mgd

 (VarProbe, _VarProbe): Merge.

1998-11-12 objectbase.h mgd

 (Arguments): Remove (moved to defobj.h).

1998-09-04 objectbase.h mgd

 (val_t): Add _short and _ushort.

1998-09-03 objectbase.h mgd

 (val_t): Add _uint, _ulong, and _long.

1998-08-20 objectbase.h mgd

 Declare setDefaultAppDataPath:.

1998-08-19 objectbase.h mgd

 Declare setDefaultAppConfigPath:.

1998-08-19 objectbase.h mgd

 Do it here.

1998-08-07 objectbase.h mgd

 Add @class SwarmObject.

1998-07-15 objectbase.h mgd

 Split VarProbe into new features vs. user presentation.

1998-07-14 objectbase.h mgd

 Minor reformatting of documentation.

1998-07-07 objectbase.h mgd

 (Probe): Add argument to setProbeClass.

1998-07-06 objectbase.h alex

 (Arguments): Further clarify use of Arguments with main.m program fragment in Example.

1998-06-24 objectbase.h alex

 (Arguments): Add protocol. Add documentation description for Arguments, including long example marked-up
with //E:.

1998-06-17 Makefile.am mgd

 Include from refbook/ instead of src/.

1998-06-17 objectbase00.sgml alex

 Added missing reference to import of activity.h.

1998-06-17 objectbasemeta.sgml alex

 Removed redundant text from ABSTRACT.

1998-06-17 objectbase.h mgd

 Document Swarm.

1998-06-15 Makefile.am mgd

 (MODULE): New variable. Include Makefile.rules from src. Remove everything else.

1998-06-12 objectbase00.sgml, objectbasecont.sgml mgd

 Update IDs to SWARM.module.SGML.type.

1998-06-06 objectbase.ent mgd

 Use public identifiers.

1998-06-05 Makefile.am mgd

 (swarm_ChangeLog): Add.

1998-06-03 objectbase.h mgd

 Update documentation tags.

1998-05-28 objectbase.h mgd

 Include defobj.h.

1998-05-27 objectbase.ent.in mgd

 Remove @srcdir@ in revhistory.

1998-05-23 Makefile.am mgd

 New file.

1998-05-23 objectbase.ent.in mgd

 New file.

1998-05-23 objecbase.ent mgd

 Removed.

1998-05-22 mgd

 Begin revision log.

1998-05-06 objectbase.h mgd

 Spacing changes in method declarations throughout. (ProbeConfig, DefaultProbeMap): Add description string.
(CompleteProbeMap): Add phase tags. (EmptyProbeMap): Remove -createEnd. (CompleteVarMap): Add //S.

1998-04-22 objectbase.h mgd

 Remove includes of SwarmObject.h and Swarm.h.

1998-04-15 objectbase.h mgd

 Add //D: documentation comment tag for module.

1998-03-19 objectbase.h mgd

 Add const char * slot to val_t union.

1998-03-18 objectbase.h mgd

 Declare swarm_version.

1998-03-02 objectbase.h mgd

 (MessageProbe): Declare doubleDynamicCallOn:.

1998-02-26 objectbase.h mgd

 (val_t): Add _uchar.

1998-02-23 objectbase.h mgd

 (val_t): Define. Change declarations per MessageProbe.h changes below.

1998-02-04 objectbase.h mgd

 Change header comment to objectbase.h. Include from swarmobject/ to objectbase/.

1998-01-24 objectbase.h mgd

 In MesageProbe protocol, declare setArg:ToObjectName:. Constify To: argument of setArg:To:. Constify second
arugment to dynamicCallOn:resultStorage:.

1997-12-09 objectbase.h mgd

 Constify argument to getProbedForVariable and getProbeForMessage (SwarmObject). Constify return of
getProbedType (Probe). Constify argument to setProbedVariable (VarProbe). Constify return of getProbedVariable
(VarProbe). Constify argument to setFloatFormat (VarProbe). Constify return of probeAsString (VarProbe, both).
Constify ToString argument to setData (VarProbe). Constify argument to setProbedMessage (MessageProbe).
Constify return of getArgName (MessageProbe). Constify argument to getProbeForVariable and
getProbeForMessage (ProbeMap). Constify argument to dropProbeForVariable and dropProbeForMessage
(ProbeMap). Constify first argument to getProbeForVariable and getProbeForMessage (ProbeLibrary). Reformatting
throughout.

1997-12-08 objectbase.h gepr

 Moved all swarmobject files from swarmobject directory to objectbase directory. Renamed swarmobject.h to
objectbase.h. Changed all instances of swarmobject.h to objectbase.h and all instances of swarmobject/ to
objectbase/.

196

ActivityControl

Name
ActivityControl — A class that provides an object interface to an activity.

Description
The ActivityControl class specifies an object that can be attached to an activity (regardless of how or
where that activity is created) for the purpose of explicitly controlling the execution of actions on that
activity's action plan. There is nothing that available through this class that is not already available
through the variables or messages available via the activity itself. However, it packages up the main
control messages and makes them available to other objects that may need control over an activity,
thereby shielding the activity from directly receiving messages from outside objects and saving the user
from having to parse the more complex interface to the activity.

Protocols adopted by ActivityControl
SwarmObject (see page 211)

CREATABLE (see page 44)

Methods

Phase: Using
• - (id <ScheduleActivity>)getActivity

Return the controlled activity.

• - (void)terminate

Recursively removes all subactivities.

• - (id <Symbol>)getStatus

The getStatus method returns the status of the activity.

• - (void)updateStateVar

The updateStateVar method updates the ActivityControl instance variables
and tests for the continued existence of the activity that is being
controlled. This message is sent on each cycle of the schedule for the
activity being controlled.

• - (id <Symbol>)stepUntil: (timeval_t)stopTime

The stepUntil: method sends a stepUntil: message to the activity if
conditions are appropriate. This causes all actions on the activity's
schedule, including any actions on subactivities' schedules, to be
executed until the activity's relative time is equal to stopTime - 1.

• - (id <Symbol>)stepAction

Objectbase

197

The step method sends a step message to the activity if the conditions are
appropriate. It causes the execution of a single action.

• - (id <Symbol>)nextAction

The next method sends a next message to the activity if the conditions
are appropriate. It runs an activity forward through as many actions as
necessary until it hits a breakFunction, at which point it walks back up
the tree of activities and returns Stopped. In most cases, this means that
an entire action or action group on the activity under control will be
executed, including completion of all subactivities.

• - (id <Symbol>)stopActivity

The stop method sends a stop message to the activity if the conditions
are appropriate. This message causes the control to move back up the run-
stack and resume at the place in the code where the run was first
executed. The next action on the super-activity will begin without
finishing the rest of the current activity's actions.

• - (id <Symbol>)runActivity

The run method sends a run message to the activity if the conditions are
appropriate. This message causes the activity to continue executing the
actions on its schedule until either no other actions are waiting, or
until the execution of actions is stopped by a subactivity or stopped by a
stop message to the activity. If the activity completes executing all the
actions on its schedule, the run method returns Completed.

• - (void)attachToActivity: (id <ScheduleActivity>)anActivity

The attachToActivity: method sets an instance variable inside the
ActivityControl object that points to the Activity to be controlled. It
then creates a Schedule upon which it places a message to itself to update
its own variables.

Objectbase

198

CompleteProbeMap

Name
CompleteProbeMap — A subclass of ProbeMap whose initial state contains the VarProbes and
MessageProbes of the requested target class but also those of all its subclasses.

Description
Upon creation, this subclass of the ProbeMap will contain all the variables and all the messages of a
given class (including the inherited ones).

Protocols adopted by CompleteProbeMap
ProbeMap (see page 208)

CREATABLE (see page 44)

Methods
None

CompleteVarMap

Name
CompleteVarMap — A subclass of ProbeMap, whose initial state contains no MessageProbes.

Description
A subclass of ProbeMap, whose initial state contains no MessageProbes, but does contain all the
VarProbes of the requested target class and those of all its superclasses.

Protocols adopted by CompleteVarMap
ProbeMap (see page 208)

CREATABLE (see page 44)

Methods
None

Objectbase

199

CustomProbeMap

Name
CustomProbeMap — A subclass of ProbeMap, whose initial state is empty unlike the default
probeMap initial state which contains all the VarProbes of the requested target class.

Description
This subclass of the ProbeMap is used to create probe maps which are initialised in an emtpy state or
with the VarProbes and MessageProbes intended. In other words, the probed class is set, as is the case
with the normal ProbeMap class but upon createEnd no VarProbes or MessageProbes will be present
within it. This feature is useful when creating a probe map from scratch (e.g. to be used in conjunction
with the setProbeMap:For: message of the ProbeLibrary).

Protocols adopted by CustomProbeMap
ProbeMap (see page 208)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone forClass: (Class)aClass withIdentifiers: (const
char *)vars : ...

Convenience method for creating a CustomProbeMap in which the user
specifies the list of variables and methods to be probed this by passing a
delimited list of strings of the form: "var1", "var2", ..., ":", "method1",
"method2",..., NULL

Phase: Setting
• - addProbesForClass: (Class)aClass withIdentifiers: (const char *)vars :

...

Allows further probes specified in the delimited string list to be added
after the CustomProbeMap has been created

Objectbase

200

DefaultProbeMap

Name
DefaultProbeMap — A subclass of ProbeMap, whose initial state contains all the VarProbes of the
requested target class and also those of all its superclasses.

Description
A subclass of ProbeMap, whose initial state contains all the VarProbes of the requested target class and
also those of all its superclasses.

Protocols adopted by DefaultProbeMap
ProbeMap (see page 208)

CREATABLE (see page 44)

Methods
None

EmptyProbeMap

Name
EmptyProbeMap — A CustomProbeMap to be used for building up ProbeMaps from scratch.

Description
A CustomProbeMap to be used for building up ProbeMaps from scratch.

Protocols adopted by EmptyProbeMap
CustomProbeMap (see page 199)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone forClass: (Class)aClass

Convenience method for creating an EmptyProbeMap

Objectbase

201

MessageProbe

Name
MessageProbe — A class that allows the user to call a given message on any candidate that is an
instance of, or inherits from, a given class.

Description
This is a specialized subclass of the abstract class Probe. It completes the specification of a probe that
refers to a message element of an object.

Protocols adopted by MessageProbe
Probe (see page 203)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setProbedSelector: (SEL)aSel

Convenience factory method for common case.

• - setProbedMethodName: (const char *)methodName

The setProbedMessage: method sets the message to be probed given the
message name. In dynamically-typed languages like JavaScript selectors
don't make sense, since method argument types aren't fixed.

• - setProbedSelector: (SEL)aSel

The setProbedSelector: method sets the message to be probed given the
selector.

Phase: Setting
• - setHideResult: (BOOL)val

The setHideResult: method is used to set the visibility of the result
field. When set to 1, the user is indicating that the result field in a
graphical representation of the message probe should not be shown.

Phase: Using
• - objectDynamicCallOn: target

The objectDynamicCallOn: method generates a dynamic message call on the
target object. This method assumes the user knows the return type to be
id.

• - (const char *)stringDynamicCallOn: target

Objectbase

202

The stringDynamicCallOn: method generates a dynamic message call on the
target object. This method assumes the user knows the return type to be
const char *.

• - (long)longDynamicCallOn: target

The longDynamicCallOn: method generates a dynamic message call on the
target object. This method assumes the user knows the return type to be
numeric and would like a direct translation into type logn.

• - (double)doubleDynamicCallOn: target

The doubleDynamicCallOn: method generates a dynamic message call on the
target object. This method assumes the user knows the type to be numeric
and would like a direct translation into type double.

• - (val_t)dynamicCallOn: target

The dynamicCallOn: method generates a dynamic message call on the target
object.

• - setArg: (unsigned)which ToUnsigned: (unsigned)x

The setArg:ToUnsigned: method sets the nth argument of the message used
by the probe to an unsigned integer value. The user is responsible for
matching the unsigned integer type of this argument with the argument type
of the method being probed.

• - setArg: (unsigned)which ToString: (const char *)what

The setArg:ToString: method sets the nth argument of the message. The
argument must be provided in string form.

• - (BOOL)getHideResult

The getHideResult method returns 1 if the result field is "hidden".

• - (const char *)getArgName: (unsigned)which

The getArgName: method returns a string representation of the argument key
with the given index.

• - (val_t)getArg: (unsigned)which

The getArg: method returns the argument type for a given index.

• - (unsigned)getArgCount

• - (const char *)getProbedMessage

The getProbedMessage method returns the string matching the identifier of
the message being probed.

• - (BOOL)isArgumentId: (unsigned)which

The isArgumentId: method returns 1 if a given argument of the message is
of type object, and returns 0 otherwise.

• - (BOOL)isResultId

The isResultId method returns 1 if the return value of the message is of
type object, and returns 0 otherwise.

Objectbase

203

Probe

Name
Probe — An abstract superclass of both VarProbe and MessageProbe.

Description
A Probe is simply an object that contains pointers to an element (instance variable or message
description) of another object. The Probe contains instance variables that describe the referent's class
and type. It's actually an abstract class that is further subdivided into VarProbe and MessageProbe,
which represent the two basic types of elements of any object. The Probes are collected into a ProbeMap
and subsequently installed in the ProbeLibrary.

Protocols adopted by Probe
SwarmObject (see page 211)

ProbeConfig (see page 204)

Methods

Phase: Creating
• - setProbedObject: object

• - setProbedClass: (Class)class

The setProbedClass: method sets the class of the object the probe points
at and must be called at create time.

Phase: Setting
• - unsetSafety

The unsetSafety method turns off the option of checking the compatibility
of the class of the object before any actions are performed on the object.

• - setSafety

The setSafety method turns on the option of checking the compatibility of
the class of the object before any actions are performed on the object.

Phase: Using
• - (const char *)getProbedType

The getProbedType method returns the typing of the probed variable or
message. The typing is represented using the string-format provided by the
Objective-C runtime system.

• - (Class)getProbedClass

The getProbedClass method returns the class of the object the probe points
at as a Class pointer.

Objectbase

204

• - clone: (id <Zone>)aZone

The clone: method returns a clone of the probe. If the initial probe was
created by Library Generation or by the default version of Object
generation, the probe should be cloned prior to making changes to it to
avoid having the changes affect the other potential users of the probe.

ProbeConfig

Name
ProbeConfig — Protocol for configuration of Probes, ProbeMaps, and the ProbeLibrary.

Description
Protocol for configuration of Probes, ProbeMaps, and the ProbeLibrary.

Protocols adopted by ProbeConfig
None

Methods

Phase: Using
• - getObjectToNotify

• - setObjectToNotify: anObject

Objectbase

205

ProbeLibrary

Name
ProbeLibrary — A (singleton) Class, whose instance is used as a container for a global mapping
between classnames and their 'default' ProbeMaps. These defaults can be changed by the user, thus
allowing him/her to customize the default contents of the ProbeDisplays generated when probing
objects.

Description
The normal Swarm simulation will probably only ever contain one instance of this class, namely the
probeLibrary object. This object is used for Library Generation of Probes and ProbeMaps: its role is to
cache one unique "official" ProbeMap for every Class ever probed during a run of Swarm. These
ProbeMaps are generated as they are requested.

Protocols adopted by ProbeLibrary
Create (see page 46)

Drop (see page 54)

ProbeConfig (see page 204)

CREATABLE (see page 44)

Methods

Phase: Using
• - setProbeMap: (id <ProbeMap>)aMap ForObject: anObject

• - setProbeMap: (id <ProbeMap>)aMap For: (Class)aClass

The setProbeMap:For: method sets the standard probe map as the probe map.
The returned Probe will be cached as though it was produced by the library
itself.

• - (id <MessageProbe>)getProbeForMessage: (const char *)aMessage inObject:

anObject

• - (id <MessageProbe>)getProbeForMessage: (const char *)aMessage inClass:

(Class)aClass

The getProbeForMessage:inClass: method returns a probe that has been
"checked out" from the appropriate Probes in the probe library. Note: The
returned probe will be cached so to avoid affecting the results of
future requests for the same probes, clone the probe prior to making
modifications to the probe.

• - (id <VarProbe>)getProbeForVariable: (const char *)aVar inObject: anObject

Objectbase

206

• - (id <VarProbe>)getProbeForVariable: (const char *)aVar inClass:

(Class)aClass

The getProbeForVariable:inClass: method returns a probe that has been
"checked out" from the appropriate Probes in the probe library. Note: The
returned probe will be cached so to avoid affecting the results of
future requests for the same probes, clone the probe prior to making
modifications to the probe.

• - (id <ProbeMap>)getCompleteVarMapForObject: anObject

• - (id <ProbeMap>)getCompleteVarMapFor: (Class)aClass

The getCompleteVarMapFor: method returns a ProbeMap containing Probes for
all the instance variables of the given Class (including inherited
variables) but does not include any MessageProbes.

• - (id <ProbeMap>)getCompleteProbeMapForObject: anObject

• - (id <ProbeMap>)getCompleteProbeMapFor: (Class)aClass

The getCompleteProbeMapFor: method returns a ProbeMap containing Probes
for all the instance variables and messages of the given Class (including
inherited variables and messages). The current implementation of
ProbeLibrary does not cache CompleteProbeMaps.

• - (id <ProbeMap>)getProbeMapForObject: anObject

• - (id <ProbeMap>)getProbeMapFor: (Class)aClass

The getProbeMapFor: method returns a ProbeMap for the aClass class. If a
specific ProbeMap has been designed and installed in the ProbeLibrary for
that class, then that specific ProbeMap is returned. If a custom ProbeMap
was not designed and installed, then a CompleteProbeMap is created and
returned.

• - (BOOL)isProbeMapDefinedForObject: anObject

• - (BOOL)isProbeMapDefinedFor: (Class)aClass

The isProbeMapDefinedFor: method returns True if there is a non-nil value
in the ProbeLibrary for that class and False otherwise.

• - (unsigned)getSavedPrecision

The getSavedPrecision method gets the current saved precision set in the
ProbeLibrary instance.

• - setSavedPrecision: (unsigned)nSigSaved

The setSavedPrecision: method sets the number of significant digits saved
for floating-point and double floating-point numbers through ObjectSaver.
This function sets the global default precision for all floating point
numbers, including double floating point numbers. This floating point
precision affects all numbers saved via the ObjectSaver class. There is
currently no way to override this global default for an individual probe.

• - (unsigned)getDisplayPrecision

The getDisplayPrecision method gets the current display precision set in
the ProbeLibrary instance.

• - setDisplayPrecision: (unsigned)nSigDisplay

Objectbase

207

The setDisplayPrecision: method sets the number of significant digits for
floating point and double floating point numbers displayed on GUI widgets.
This method is currently only implemented for VarProbes. It has not been
implemented for MessageProbes yet. The setDisplayPrecision method allows
all probes checked out from the global ProbeLibrary instance to access
this displayed precision. However, individual probes can vary from this
global default, by using the setFloatFormat method on a exisiting probe.

Objectbase

208

ProbeMap

Name
ProbeMap — A container class for Probes used to specify the contents of a ProbeDisplay.

Description
A ProbeMap is a Map-type collection of Probes. They are used to gather several Probes, who usually
have a common referent, into a single bundle. For example, all the instance variables of a ModelSwarm
might be gathered into a single ProbeMap. Each ProbeMap is then installed into the global
ProbeLibrary.

Protocols adopted by ProbeMap
SwarmObject (see page 211)

ProbeConfig (see page 204)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setProbedObject: object

• - setProbedClass: (Class)class

The setProbedClass: method sets the class of the object that the set of
probes that constitute the probe map points at. This message must be sent
before createEnd.

Phase: Using
• - clone: (id <Zone>)aZone

The clone: method returns a clone of the probe map. If the initial probe
map created by Library Generation or by the default version of Object
generation, the probe map should be cloned prior to making changes to it
to avoid having the changes affect the other potential users of the probe
map.

• - (id <Index>)begin: (id <Zone>)aZone

The begin: method returns an iterator (index) over the ProbeMap. This
index is used in the exact same way any Map index is used.

• - dropProbeMap: (id <ProbeMap>)aProbeMap

The dropProbeMap: method is used to drop a probe from a probe map. It is
equivalent to callling dropProbeForVariable for each variable name present
in the ProbeMap being dropped, followed by a call to dropProbeForMessage
for each message name present in the ProbeMap being dropped.

Objectbase

209

• - (void)dropProbeForMessage: (const char *)aMessage

The dropProbeForMessage: method is used to drop a Probe from the ProbeMap.
No class verification takes place since the probe is dropped based on its
messageName, not its actual id value.

• - (void)dropProbeForVariable: (const char *)aVariable

The dropProbeForVariable: method is used to drop a Probe from the
ProbeMap. No class verification takes place since the probe is dropped
based on its variableName, not its actual id value.

• - addProbeMap: (id <ProbeMap>)aProbeMap

The addProbeMap: method is used to tailor the contents of a ProbeMap by
performing "set inclusion" with another ProbeMap. The typing is verified
prior to inclusion.

• - addProbe: (id <Probe>)aProbe

The addProbe: method adds a probe to the contents of the ProbeMap. The
ProbeMap will always make sure that the probedClass of the Probe being
added corresponds to its own probedClass.

• - (Class)getProbedClass

The getProbedClass method returns the class of the object that the set of
probes that constitute the probe map points at.

• - (unsigned)getCount

The getCount method returns the number of probes in the ProbeMap.

Objectbase

210

Swarm

Name
Swarm — A temporal container.

Description
A Swarm is a community of agents sharing a common timescale as well as common memory pool.

Protocols adopted by Swarm
SwarmProcess (see page 178)

CREATABLE (see page 44)

Methods

Phase: Using
• - (id <VarProbe>)getProbeForVariable: (const char *)aVariable

Needed to support probing of Swarms.

• - (id <ProbeMap>)getCompleteProbeMap

Needed to support probing of Swarms.

• - (id <ProbeMap>)getProbeMap

Needed to support probing of Swarms.

• - (id <Activity>)activateIn: (id <Swarm>)swarmContext

Override this to activate any actions you built in buildActions. Note, you
must activate yourself first before you can activate actions inside you.

Example -activateIn: #1
[super activateIn: swarmContext];
[fancySchedule activateIn: self];
return [self getSwarmActivity];

• - buildActions

Override this to let your Swarm build its actions.

• - buildObjects

Override this to let your Swarm create the objects that it contains.

Objectbase

211

SwarmObject

Name
SwarmObject — A superclass of most objects in a Swarm simulation that provides support for
probing.

Description
A SwarmObject is an object that is intended to be a member of a Swarm. It's behavior will be
perpetuated by messages sent from the schedule of events defined in the context of Swarm object.

The SwarmObject is where the models of all the agents of a simulation will reside. Hence, most of the
burden on defining the messages that can be sent to any agent lies with the user. SwarmObject inherits
its basic functionality from the Create and Drop object types defined in the defobj library.

Protocols adopted by SwarmObject
Create (see page 46)

Drop (see page 54)

CREATABLE (see page 44)

Methods

Phase: Using
• - (id <MessageProbe>)getProbeForMessage: (const char *)aMessage

The getProbeForMessage: method returns the MessageProbe indexed in the
ProbeMap by the string aMessage.

• - (id <VarProbe>)getProbeForVariable: (const char *)aVariable

The getProbeForVariable: method returns the VarProbe indexed in the
ProbeMap by the string aVariable.

• - (id <ProbeMap>)getCompleteProbeMap

The getCompleteProbeMap method returns a newly created CompleteProbeMap
for an object.

• - (id <ProbeMap>)getProbeMap

The getProbeMap method returns a pointer to the ProbeMap for the object if
there has been one creaded for that object's class. If it hasn't been
created, then it creates a default ProbeMap.

Objectbase

212

VarProbe

Name
VarProbe — A class that allows the user to inspect a given variable in any candidate that is an
instance of, or inherits from, a given class.

Description
This is a specialized subclass of the abstract class Probe. It completes the specification of a probe that
refers to an instance variable element of an object.

Protocols adopted by VarProbe
Probe (see page 203)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setProbedVariable: (const char *)aVariable

The setProbedVariable: sets the variable being probed. The aVariable
identifier is simply a character string consisting of the identifier of the
variable referent. This method must be called during the create phase.

Phase: Setting
• - setFloatFormat: (const char *)format

The setFloatFormat: method sets the floating-point format of a GUI display
widget when given a sprintf-style formatting string.

• - setStringReturnType: returnType

The setStringReturnType: method sets the format that will be used to print
the variable. When the probedVariable is of type unsigned char or char,
the method probeAsString will, by default, return a string of the format:
"'%c' %d". This is meant to reflect the commonplace use of an unsigned
char as a small int.

• - setNonInteractive

The setNonInteractive method sets a VarProbe to be non-interactive. This
ensures that the user will not be able to change the value of a probe, only
observe it. Setting the VarProbe to be non-interactive will not interfere
with the drag and drop capability of the objects into the VarProbe field.

Phase: Using
• - (void)setData: anObject ToDouble: (double)val

Objectbase

213

Sets the probeVariable value using a double. This requires that the value
is numeric.

• - (BOOL)setData: anObject ToString: (const char *)s

The setData:ToString: sets the probedVariable using a string which the
probe reads and converts appropriately. When setting the value of an
unsigned char or a char using this method, the expected format of the
string is always "%i" unless CharString was chosen (in which case the
format should be "'%c'").

• - (void)setData: anObject To: (void *)newValue

The setData:To: method sets the probedVariable using the pointer to the
new value.

• - iterateAsInteger: anObject using: (void (*) (unsigned rank, unsigned

*vec, int val))func

Iterates through the elements in an array, calling the argument function
with the rank, position vector, and array element cast as an integer.

• - iterateAsDouble: anObject using: (void (*) (unsigned rank, unsigned *vec,

double val))func

Iterates through the elements in an array, calling the argument function
with the rank, position vector, and array element cast as a double.

• - (unsigned *)getDims

Returns a vector equal to length returned by getRank: with the dimensions
of the array (major to minor).

• - (const char *)getBaseType

In the case of arrays, returns the base type.

• - (unsigned)getRank

Returns rank of array, or 0 for scalar objects.

• - (id <String>)probeAsString: anObject

The probeAsString: method prints the value of the variable into a new
String object.

• - (const char *)probeAsString: anObject Buffer: (char *)buffer

The probeAsString:Buffer: method prints the value of the variable into the
buffer. The buffer should be pre-allocated.

• - (const char *)probeAsString: anObject Buffer: (char *)buf
withFullPrecision: (BOOL)precision

The probeAsString:Buffer:withFullPrecision: method prints the value of the
variable into the buffer. The buffer should be pre-allocated. This
version of probeAsString is used internally by ObjectSaver to use the
"saved as" precision form which may differ from the "displayed" precision.

• - (double)probeAsDouble: anObject

The probeAsDouble: method returns a pointer to the probed variable as a
double.

• - (int)probeAsInt: anObject

Objectbase

214

The probeAsInt: method returns a pointer to the probed variable as an
integer.

• - probeObject: anObject

A field probed with probeAsObject: must be an object.

• - (void *)probeAsPointer: anObject

The probeAsPointer: method returns a pointer to the probed variable based
on the probeType.

• - (void *)probeRaw: anObject

The probeRaw: method returns a pointer to the probed variable.

• - (BOOL)getInteractiveFlag

The getInteractiveFlag method returns the interactivity state of the
VarProbe.

• - (const char *)getProbedVariable

The getProbedVariable method returns a string matching the identifier of
variable being probed.

Globals
id <Symbol> DefaultString

 No description available.
id <Symbol> CharString

 No description available.
id <Symbol> IntString

 No description available.

General

Name
objectbase — Support for Swarm objects and probing

Description
The objectbase library contains the most basic objects users need to design their agents and swarms. It
also serves, at present, as a repository for the probe machinery, which is provided for every
SwarmObject.

Globals
id <ProbeLibrary> probeLibrary

 The global librarian for ProbeMaps.
const char * swarm_version

 The version of Swarm being used.

Random Library
Overview

First, a few thoughts on random number generation. It's hard to do right! The root cause, of course, is
that computer algorithms themselves are not truly random. (Hence this library contains pseudo-random
generators only.) There are many problems in implementing algorithms correctly and efficiently, and in
coming up with good tests for generators and distributions. The history of pseudorandom number
generation in simulation work is mostly embarrassing. This library attempts to do a decent job of
generating random numbers, as well as documenting how things work and what shortcomings there are.
If you want to learn more about random number generation, the bibliography in the Swarm User Guide
(http://www.swarm.org) has useful notes. Knuth is the main reference in this realm, but too old to
describe most of the particular generators used here, many of which are drawn from recent literature.

1. Dependencies
Following are the other header files imported by <random.h>:

#import <objectbase.h>
#import <random/generators.h>
#import <random/distributions.h>
#import <random/randomdefs.h>
#import <random/randomvars.h>

The objectbase library interface is included to provide the basic object support. randomdefs.h contains
some C preprocessor macros and typedefs used in the library.

This reference guide contains the object definitions for generators and distributions (see the list above)
and also encodes the inheritance structure through the "Protocols that this protocol uses" section of each
protocol. Just click on a (sub-)protocol name to see what methods it implements. (You may want to
review the section on Protocols in the Objective-C book here!)

In the protocols described, any protocol that ultimately inherits from CREATABLE defines an object
that you can use in your program. (This is part of the Swarm defobj machinery.) In other words, while
'InternalState' is a normal protocol (a list of method definitions), the name `ACGgen' refers to both a
protocol and a class that implements that protocol. Similarly, 'GammaDist' defines both a protocol and a
class that implements that protocol.

All generators and distributions ultimately inherit from SwarmObject.

2. Compatibility
• 1.0.2 -> 1.0.3. Note: The new random library does not work in the same way as the old one. This

means that some applications that used the random library provided with the 1.0.2 release will be
broken. However, porting these applications to the new random library will be fairly easy since large
efforts were made to adhere to the standard set with the last version and some backwards
compatibility hooks were incorporated.

• 1.0, 1.1, 1.2, 1.3, 1.3.1, 1.4. There were no major compatibility issues in these releases.

3. Usage Guide

3.1. Overview
The random library contains two kinds of objects, the generators which implement different pseudo-
random-number algorithms, and the distributions which transform the (uniform) output from the
generators into the desired simulated statistical distributions. (The Swarm random library does not
implement any true random number generators at this time.)

3.2. Usage Guide for Beginners, Advanced Usage Guide and
Guide to Generators and Distributions
All these sections have been relocated to the Swarm User Guide (http://www.swarm.org)

4. Subclassing Reference
Random library objects do not do anything exotic during the create phase. The competent programmer
may subclass these objects in the normal manner.

5. Implementation Notes
This section provides implementation details for the current version of the random library.

5.1. General Implementation Notes
This is release 1.4.1 of the Swarm libraries. It contains version 0.8 of the random-number library and
version 0.81 of the random library documentation.

Look at the Random Library (see page 215) for the objects defined in this library.

`Fat' vs. `Thin' doubles. Note that distributions which use floating point variates from their generators
by default draw `fat' doubles (-getDoubleSample) which use two calls to the basic (32-bit) unsigned int
sample method (-getUnsignedSample) in order to fill the 53-bit mantissa of a double. If you don't need
this much precision, or want to speed up the distributions, you can make the distributions use `thin'
samples (-getThinDoubleSample) instead. See the note at the top of random/distributions.h for
how to change this behavior. If you do, be sure to remake Swarm (make, make install).

5.2. Implementation notes for Generators
Version 0.8: Changes since version 0.75.

1. The code was rearranged to conform to create-phase protocol (CREATING-SETTING-USING)
ordering.

2. Some for-loop indices were changed to unsigned integers to eliminate compiler warnings.

3. A few objects (C2LCGXgen, C4LCGXgen, SWBgen, TGFSRgen) were given their own -drop
methods to drop internally allocated arrays properly.

4. A new -reset method was added to all generators. This method resets the state of the generator to
what it was at creation, or at the point when -setStateFromSeed(s) was last used. Counters are also
reset.

Version 0.75: Changes since version 0.7.

1. The method '-getDoubleSample' was redefined to use only double variables in its implementation
(instead of long doubles).

2. The macros used for starting seed generation were changed to avoid a situation where many new
generators would be created the same starting seed (if '--varyseed' was not specified.) See the
Generator Usage Guide and the Reference Guide for details.

Version 0.7: Improvements over version 0.6.

• A host of new generators, located on the web or in the literature, have been added since the last
version of Random. There is now a total of 36 different generators defined! Some of these have
immense periods, some are very fast, and some have much better statistical properties than the old
generators.

• A new *type* of generator, the `split' generator, has been introduced in the form of L'Ecuyer's
C2LCGXgen and C4LCGXgen generators.

• A `split' generator is a long-period generator for which we are able to split the period into arbitrary
sub-periods, which we can access quickly. We then configure the generator as having a number (A) of
`virtual generators', each of which can address a number (2^v) of sub-segments of length 2^w. These
parameters (A,v,w) are user selectable when the generator is created. (As an example, for
C4LCGXgen the default values are A=128, v=31, w=41.) The advantage is that the subsegments act
as statistically independent streams of random numbers.

• In addition to the -getUnsignedSample method, generators now also supply floating point output in
the range [0.0,1.0), in the form of these methods:

-(float) getFloatSample; // using 1 unsigned value
-(double) getThinDoubleSample; // using 1 unsigned value
-(double) getDoubleSample; // using 2 unsigned values
-(long double) getLongDoubleSample; // using 2 unsigned values

Note that the last method is not portable across architectures, since the length of a long double varies
between machines.

• Generators may now be started with a single seed, *or* with a vector of seeds whose length is
generator dependent. (PMMLCG requires 1 integer for a seed, while MT19937 needs 624 of them.)

• Generators now remember what seed values they were started with. They also count how many
variates they have delivered (i.e., how many calls to -getUnsignedSample they have serviced.)

• There are a few arbitrary seed values, DEFAULTSEED, DEFAULTSEED1, DEFAULTSEED2,
DEFAULTSEED3, DEFAULTSEED4 defined. There is also the value FIRSTSEED, which returns
the value that the default generator `randomGenerator' was started with.

• The macro NEXTSEED will generate a deterministic sequence of seed values, using and inline LCG
and starting with FIRSTSEED. There is the macro RANDOMSEED, which will be different every
time it is invoked because it depends on program time. And there is value STARTSEED, which will

by default equal NEXTSEED, but will instead be equal to RANDOMSEED if you start your program
with the --varyseed or -s command line parameter.

• The generators have gained a new creation method, '+createWithDefaults: aZone', which creates the
generator and initializes it with STARTSEED. Split generators get default values for A,v,w.

Version 0.7: Changes since version 0.6.

• The generator classes have changed names to where they all end in '-gen'. A simple search-and-
replace in your code will get you up and running again.(Or perhaps you'll want to try one of the new
generators?)

• A bug in SWBgen was corrected. Code for ACG and SCG was also changed.

• The -verifySelf method is gone. Instead see the test program located in /random/testR0.
(Available in a separate tarball at the SFI ftp site.)

• The `getState:' method has been named `putStateInto: (void *) buffer', and the `setState:' method is
now `setStateFrom: (void *) buffer'. A quick search-and-replace fixes things in your code.

• Note: these methods have also changed somewhat, as has the size of the data being saved. As a result,
v. 0.7 generators will refuse to `setStateFrom' data saved by v. 0.6 objects.

• There should be fewer changes like this in the next release.

Testing Generators. Since v. 0.6 we have done some rudimentary statistical testing of the implemented
generators, using Marsaglia's Diehard tests and the ENT tests. The results of these tests are summarized
in Generator quality table (now found in the Swarm User Guide (http://www.swarm.org)), where test
results as well as period length, state size and execution times are listed. You can use these data to select
a generator that suits your simulation. Some brief comments:

a. the tests show that old generators SCG and LCG are of poor quality and should be avoided.

b. the lagged-Fibonacci based generators (ACG, SWB, PSWB) all fail Diehard's `Birthday spacings
test', for reasons having to do with their lattice structure. These generators are only conditionally
recommended.

c. The rest of the 32-bit generators (i.e. generators that fill all 32 bits of an unsigned int) pass all tests,
and are recommended at this time. (Note that while a test may show that a generator is bad, passing
a number of tests does not prove that a generator is good!)

d. The 31-bit generators all fail the same set of tests. Some of these cannot be passed by a generator
whose output has a `stuck' bit. Until I clear up with Prof. Marsaglia how to interpret these results, I
believe all the 31-bit generators are in the `recommended' category.

e. However, a cautionary note: while the PMMLCG generators pass the tests, they have a very short
period (less than 2^31) and should only be used for `toy' simulations. You don't want your
generator(s) to `go around' and start repeating themselves !

f. For what it's worth, Professor L'Ecuyer recommends his own C4LCGX and C2MRG3 generators as
well as Matsumoto's TT800 (the monster MT19937 hadn't been released yet), and Prof. Marsaglia
recommends his own Multiply-With-Carry generators (MWCA, MWCB, C3MWC, RWC2,
RWC8="Mother").

5.3. Implementation notes for Distributions
Version 0.8: Changes over version 0.75. No functional changes were made. Code was rearranged to
conform to create-phase protocol (CREATING-SETTING-USING) ordering.

Version 0.75: Changes over version 0.7. No functional changes were made.

Version 0.7: Improvements over version 0.6.

• One new distribution class, BernoulliDist, has been added. It returns binary values (yes/true/1) with a
given probability (while the old RandomBitDist has a fixed 50% probability, a fair coin toss.)

• Distributions now have a new create method, '+createWithDefaults: aZone'. This method creates the
distribution object, and also a new generator object for its exclusive use. Each distribution class has a
different default generator class assigned. These generators are initialized with STARTSEED, which
by default equals the fixed value DEFAULTSEED, but will be equal to the varying RANDOMSEED
if you start your program with the command line parameter --varyseed or -s.

• All distributions have code to interact with the new `split' generators.

• UniformIntegerDist and UniformUnsignedDist now allow you to set parameter minValue equal to
maxValue. In this case that value is returned every time.

• UniformDoubleDist also allows this, even if the set [x,x) is mathematically suspect ...

• NormalDist and LogNormalDist now allow you to specify zero Variance, in which case the values
returned are the Mean and exp(Mean) respectively.

Version 0.7: Changes since version 0.6.

• The distribution classes have changed names to where they all end in `Dist'. A simple search-and-
replace in your code will get you back up and running.

• The strong distinction between `frozen' and `un-frozen' distribution objects in v. 0.6 has been softened
considerably. You may now set and reset the default parameters as often as you wish, and you may
make calls for variates with given parameters even if different default parameters have been set.

• The generation of uniform(0,1) floating point values has been moved from the distribution objects
into the generator objects. Thus, if all you need is a uniform(0,1) double, you have no need of a
distribution but can get what you desire from a generator.

• Note that the generators fill the mantissa of a double from two 32-bit unsigned values in a different
manner from v. 0.6 distributions, so output will be a bit different in the new version.

• A bug in LogNormalDist has been fixed.

• The `getState:' method has been named `putStateInto: (void *) buffer', and the `setState:' method is
now `setStateFrom: (void *) buffer. A quick search-and-replace fixes things in your code.

• But note: these methods have also changed somewhat, as has the size of the data being saved. As a
result, v. 0.7 distributions will refuse to `setStateFrom' data saved by v. 0.6 objects.

Utility Objects Provided. The following objects have been defined in random/random.m. They may
be accessed and used from anywhere in your program.

id <SimpleRandomGenerator> randomGenerator;
id <UniformIntegerDist> uniformIntRand;
id <UniformUnsignedDist> uniformUnsRand;

id <UniformDoubleDist> uniformDblRand;

The 3 distribution objects all draw their random numbers from the MT19937 generator, which has a
period of 2^19937 (10^6001) and is quite fast.

5.4. Programming yet to do
Like many Open Source projects, this random-number library is a work in process. Further
developments still on the to-do list are detailed below.

The following changes and additions are contemplated for the next release of Random for Swarm
(though I don't promise they'll all make it in -- nor when that next release will be):

a. ADD a few more generators. It's good to have many different types of generators, so you can test
your model's results with different generators and ensure that the results aren't artifacts of the
generator used. And people seem to insist on inventing new, better ones with longer periods!

b. ADD more distributions. NOTE: if you have any strong opinions about what distributions or
generators need to be added, please e-mail me!

c. TEST the generators, using Marsaglia's Diehard battery, or L'Ecuyer's tests when/if those become
available. This will allow us (a) to make a choice between the implemented generators on the basis
of their statistical quality, (b) to decide what old and bad generators to remove, and (c) to detect any
bugs in my implementation.

d. TEST the distributions, to make sure they actually put out numbers according to the probability
distribution and parameters used.

e. ELIMINATE 'bad' old generators on the basis of statistical tests

f. RETAIN PMMLCG as the only short-period generator, for convenience

g. ADD an 'empirical' distribution, whose f is defined by a set of user- supplied data

h. IMPLEMENT a version of getState/setState that is portable across machine architectures, so that
simulations may be moved to or duplicated on other machines. (The problem: integers and doubles
are stored in different byte orders on different systems.)

i. IMPLEMENT a proper -drop method for generators that allocate their state vectors dynamically,
freeing the state vector memory to avoid `memory leakage'

j. REVIEW all objects for ways to make the crucial methods run faster

k. ADD code to make all objects meter their own usage and send the author monthly e-mails in a
stealthy manner, so he can monitor usage and perhaps start collecting a usage fee for his efforts ... ;-
) (Suggested by Rick Riolo. Thanks, Rick!)

Can you think of anything else? Drop me a note! -- Sven Thommesen
<sthomme@humsci.auburn.edu>

Documentation and Implementation Status

This is version 0.8 of Random. It was donated by Sven Thommesen. Version 0.6 was a reimplementation of most of
Nelson Minar's original random with many changes and a new interface. Versions 0.7 and 0.75 added many more
generators and distributions and changed the interface somewhat. This version cleaned up the protocol interface
definitions and fixed a few small bugs. The documentation was also improved a bit.

We are reasonably sure that the generators and distributions included here have been correctly implemented. The
generators have been subjected to a battery of statistical tests, and the results are described in the documentation.
The distributions have not been subjected to statistical tests yet. As with any pseudo-random number generation
library, the results obtained should be examined closely. A set of test programs which exercises the objects is
available on the Swarm web site, and the statistical tests are also available on the web.

Revision History
2000-05-18 random.h mgd

 ([InternalState -describe:, -getName]): Remove.

2000-03-28 mgd

 Swarmdocs 2.1.1 frozen.

2000-02-29 mgd

 Swarmdocs 2.1 frozen.

2000-02-15 random00.sgml alex

 Removed all LINKs to `Random Appendix', refer reader to Swarm User Guide. Add `Implementation Notes' back
into this PARTINTRO from old Appendix, as the Implementation details should always be in-place with the
Reference Guide.

1999-02-10 random00.sgml sthomme

 minor textual editing.

1999-02-10 random-app.sgml alex

 Brought all idrefs into line with naming convention.

1999-02-10 random00.sgml alex

 Removed `Implementation Design Notes' - no longer relevant. Make link to User-Guide.For-Beginners section.
Brought all idrefs into line with naming convention.

1999-02-09 Makefile.am alex

 (SGML): Add, set to random-app.sgml. (EXTRA_DIST): Add SGML onto the dependencies generated by
`Makefile.rules'.

1999-02-09 random00.sgml alex

 Moved most content into random-app.sgml APPENDIX.

1999-02-09 random.ent alex

 Made all ENTITY references to the SGML in the `extra' subdirectory.

1999-02-09 random-app.sgml alex

 Add file. Content container for `Random' APPENDIX.

1999-02-03 random.ent sthomme

 Replaced references to README.Generators.v075 and README.Distributions.v07 with 15 new references to file
entities in extra SUBDIR.

1999-02-03 $ sthomme

(SWARMDOCS)/catalog.in: replaced the two old references with the 15 new ones.

1999-02-03 random00.sgml sthomme

 major textual revision. Expanded outline which imports 15 textual items.

1999-02-03 randommeta.sgml sthomme

 revised the text. Deleted commented-out section (old file index).

1999-01-26 random00.sgml alex

 Make all references to $(SWARMHOME)/src/random/docs be to $(SWARMDOCS)/refbook/random/extra.

1999-01-26 random.ent alex

 Add references to new text file entitites README.Generators.v075 and README.Distributions.v07.

1999-01-26 random00.sgml alex

 Use new entities in place of text in NOTE markup.

1999-01-26 Makefile.am alex

 (SUBDIRS): Add `extra' subdirectory.

1999-01-26 random00.sgml alex

 Change outdated references of the command line `-varySeed' to `--varyseed'.

1999-01-07 random00.sgml alex

({Generator,Distribution} Usage Notes): Made SIDEBAR, NOTE markup to overcome the one page limitation of
SIDEBARs in print backend.

1998-10-28 random.h mgd

 Include objectbase.h instead of defobj.h. Include random{vars,defs}.h instead of Random{Vars,Defs}.h.

1998-06-17 Makefile.am mgd

 Include from refbook/ instead of src/.

1998-06-15 Makefile.am mgd

 (MODULE): New variable. Include Makefile.rules from src. Remove everything else.

1998-06-12 random00.sgml, randomcont.sgml mgd

 Update IDs to SWARM.module.SGML.type.

1998-06-06 random.ent mgd

 Use public identifiers.

1998-06-05 Makefile.am mgd

 (swarm_ChangeLog): Add.

1998-06-03 random.h mgd

 Add summary and description tags for module.

1998-05-23 Makefile.am mgd

 New file.

1998-05-23 random.ent.in mgd

 New file.

1998-05-23 random.ent mgd

 Removed.

1998-05-22 mgd

 Begin revision log.

1997-12-08 random.h mgd

 (InternalState): Likewise.

225

ACGgen

Name
ACGgen — Additive Congruential Generator

Description
ACG is in the Lagged Fibonacci class of generators. These generators use a basic algorithm of the form
X_n = f(X_(n-r),X_(n-s)) mod m; r>s The function f is typically xor, addition, subtraction,
multiplication or subtraction with carry. It uses simpler math than a basic LCG, but keeps a larger state.

NOT recommended for serious use; these are included for historical reasons (compatibility with earlier
releases).

Protocols adopted by ACGgen
SimpleRandomGenerator (see page 261)

CREATABLE (see page 44)

Methods
None

BasicRandomGenerator

Name
BasicRandomGenerator — The common functionality of simple and split generators.

Description
This protocol covers methods common to simple and split generators.

Protocols adopted by BasicRandomGenerator
SwarmObject (see page 211)

InternalState (see page 238)

CommonGenerator (see page 234)

Methods
None

Random

226

BernoulliDist

Name
BernoulliDist — Bernoulli Distribution

Description
A distribution returning YES with a given probability.

Protocols adopted by BernoulliDist
BooleanDistribution (see page 228)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setGenerator: (id
<SplitRandomGenerator>)splitGenerator setVirtualGenerator: (unsigned)vGen
setProbability: (double)p

Use this create message if the generator to be attached is a Split one:

• + create: (id <Zone>)aZone setGenerator: (id
<SimpleRandomGenerator>)simpleGenerator setProbability: (double)p

Use this create message if the generator to be attached is a Simple one:

Phase: Setting
• - setProbability: (double)p

The setProbability: method sets the probability of returning YES.

Phase: Using
• - (BOOL)getSampleWithProbability: (double)p

The getSampleWithProbability: returns a sample YES or NO value.

• - (double)getProbability

The getProbability method returns the probability of returning YES.

Random

227

BinomialDist

Name
BinomialDist — Binomial distribution

Description
The binomial distribution gives the discrete probability of obtaining exactly n successes out of N
Bernoulli trials

Protocols adopted by BinomialDist
UnsignedDistribution (see page 271)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setGenerator: (id

<SimpleRandomGenerator>)generator

Use this create message if the generator to be attached is a Simple one:

• + create: (id <Zone>)aZone setGenerator: (id
<SplitRandomGenerator>)generator setVirtualGenerator: (unsigned)vGen

Use this create message if the generator to be attached is a Split one:

• + create: (id <Zone>)aZone setGenerator: (id
<SplitRandomGenerator>)generator setVirtualGenerator: (unsigned)vGen
setNumTrials: (unsigned)aNumTrials setProbability: (double)aProbability

Use this create message if the generator to be attached is a Split one and
both the number of trials and the probability are to be set at create time:

• + create: (id <Zone>)aZone setGenerator: (id
<SimpleRandomGenerator>)generator setNumTrials: (unsigned)aNumTrials
setProbability: (double)aProbability

Use this create message if the generator to be attached is a Simple one:
and both the number of trials and the probability are to be set at create
time:

Phase: Setting
• - setNumTrials: (unsigned)aNumTrials

The setNumTrials only sets the numTrials parameter; the probability
parameter is left unchanged from its previous or initialized value

• - setNumTrials: (unsigned)aNumTrials setProbability: (double)aProbability

Random

228

The setNumTrials:setProbability sets both the number of trials rate and
the probability parameters.

Phase: Using
• - (unsigned)getUnsignedSampleWithNumTrials: (unsigned)aNumTrials
withProbability: (double)aProbability

The getUnsignedSampleWithOccurRate:andInterval return a sample value for
the specified number of trials and probability. Does not change the the
distribution's parameter values.

• - (unsigned)getUnsignedSampleWithProbability: (double)aProbability

The getIntegerSampleWithInterval returns a sample value using the
distribution's current number of trials and new probability value. Causes
an error if the number of trials has not been previously set.

• - (unsigned)getUnsignedSample

The getIntegerSample returns a sample value using the distribution's
current number of trials and probability parameters; causes an error if
these parameters have not been previously set.

• - (double)getProbability

The getProbability returns probability parameter.

• - (unsigned)getNumTrials

The getNumTrials returns number of trials parameter.

BooleanDistribution

Name
BooleanDistribution — Boolean Distribution

Description
A probability distribution that returns YES/NO sample values.

Protocols adopted by BooleanDistribution
ProbabilityDistribution (see page 256)

Methods

Phase: Using
• - (int)getIntegerSample

• - (BOOL)getBooleanSample

The getBooleanSample method returns a YES or NO sample value.

Random

229

C2LCGXgen

Name
C2LCGXgen — A short component based generator with splitting facilities. Recommended. This
combined random generator uses 2 (PMM)LGC generators.

Description
This portable generator is based on a backbone generator which is a combination of 2 (PMM)LCG
generators. It has a period length of almost 2^61 (2.3e18). The backbone generator's period can be split
up into a number of 'virtual generators' (A), each of which can be set to access a number of 'segments'
(V) of length W, subject to the constraint that A * V * W <= 2^60.

Protocols adopted by C2LCGXgen
SplitRandomGenerator (see page 264)

CREATABLE (see page 44)

Methods
None

C2MRG3gen

Name
C2MRG3gen — Combined Multiple Recursive Generator. A combination of 2 multiple recursive LCG
generators.

Description
Combinations of like generators are shown to have better statistical properties than single generators.
The components of this generator each has two nonzero multipliers (and one that's zero). They use
different moduli (2^31-1, 2145483479.)

Protocols adopted by C2MRG3gen
SimpleRandomGenerator (see page 261)

CREATABLE (see page 44)

Methods
None

Random

230

C2TAUS1gen

Name
C2TAUS1gen — Combined Tausworthe generator 1

Description
Component 1 parameters: P = 31, S = 12, Q = 13 Component 2 parameters: P = 29, S = 17, Q = 2 With
these parameters, this generator has a single full cycle of length ~ 2^60.

Protocols adopted by C2TAUS1gen
C2TAUSgen (see page 231)

CREATABLE (see page 44)

Methods
None

C2TAUS2gen

Name
C2TAUS2gen — Combined Tausworthe generator 2

Description
Component 1 parameters: P = 31, S = 21, Q = 3 Component 2 parameters: P = 29, S = 17, Q = 2 With
these parameters, this generator has a single full cycle of length ~ 2^60.

Protocols adopted by C2TAUS2gen
C2TAUSgen (see page 231)

CREATABLE (see page 44)

Methods
None

Random

231

C2TAUS3gen

Name
C2TAUS3gen — Combined Tausworthe generator 3

Description
Component 1 parameters: P = 31, S = 13, Q = 13 Component 2 parameters: P = 29, S = 20, Q = 2 With
these parameters, this generator has a single full cycle of length ~ 2^60.

Protocols adopted by C2TAUS3gen
C2TAUSgen (see page 231)

CREATABLE (see page 44)

Methods
None

C2TAUSgen

Name
C2TAUSgen — Combined Tausworthe generator

Description
This generator is based on 2 component generators of periods 2^31-1 and 2^29-1.

Protocols adopted by C2TAUSgen
SimpleRandomGenerator (see page 261)

Methods
None

Random

232

C3MWCgen

Name
C3MWCgen — Combined Multiply With Carry generator

Description
This generator is a combination of 3 MWC generators, each of which is a combination of 2 16-bit
Multiply-With-Carry generators.

Protocols adopted by C3MWCgen
SimpleRandomGenerator (see page 261)

CREATABLE (see page 44)

Methods
None

C4LCGXgen

Name
C4LCGXgen — Combined random generator using 4 (PMM)LGC generators.

Description
This portable generator is based on a backbone generator which is a combination of 4 (PMM)LCG
generators. It has a period length of (m1-1)(m2-1)(m3-1)(m4-1) / 8, or almost 2^121 (2.6e36).

Protocols adopted by C4LCGXgen
SplitRandomGenerator (see page 264)

CREATABLE (see page 44)

Methods
None

Random

233

CommonGenerator

Name
CommonGenerator — Internal

Protocols adopted by CommonGenerator
None

Methods

Phase: Creating
• + createWithDefaults: (id <Zone>)aZone

Phase: Setting
• - setAntithetic: (BOOL)antiT

The setAntithetic method turns on or off antithetic output (default=off).
Antithetic output is (unsignedMax - u) or (1.0 - d).

• - setStateFromSeeds: (unsigned *)seeds

The setStateFromSeeds method initializes the seed dependent part of the
state from a vector of seed values.

• - setStateFromSeed: (unsigned)seed

The setStateFromSeed method initializes the seed dependent part of the
state from a single seed value.

Phase: Using
• - (unsigned)getUnsignedMax

The getUnsignedMax method returns the highest value that will ever be
returned by -getUnsignedSample (the lowest is 0).

• - reset

The -reset method sets the generator back to the state it had at start or
at the last use of -setStateFromSeed(s). CurrentCount is zeroed.

• - (unsigned)lengthOfSeedVector

The lengthOfSeedVector method returns the number of seeds required if you
wish to set the state directly.

• - (unsigned *)getInitialSeeds

The getInitialSeeds method returns a vector of the generator's starting
seed values.

• - (unsigned)getInitialSeed

The getInitialSeed method returns the value of the generator's starting
seed.

Random

234

• - (unsigned *)getMaxSeedValues

The getMaxSeedValues method returns a vector of upper limits on the seed
values that can be supplied.

• - (unsigned)getMaxSeedValue

The getMaxSeedValue method returns the upper limit on the seed value that
can be supplied.

• - (BOOL)getAntithetic

The getAntithetic method returns the current values of the parameter.

DoubleDistribution

Name
DoubleDistribution — Double Distribution

Description
A probability distribution that returns an approximation of continuous values as represented by double-
precision floating point values.

Protocols adopted by DoubleDistribution
ProbabilityDistribution (see page 256)

Methods

Phase: Using
• - (double)getDoubleSample

The getDoubleSample method returns a double-precision floating point
value.

Random

235

ExponentialDist

Name
ExponentialDist — Exponential distribuiton

Description
A well-known continuous probability distribution returning doubles.

Protocols adopted by ExponentialDist
DoubleDistribution (see page 234)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setGenerator: (id
<SplitRandomGenerator>)splitGenerator setVirtualGenerator: (unsigned)vGen
setMean: (double)mean

Use this create message if the generator to be attached is a Split one:

• + create: (id <Zone>)aZone setGenerator: (id
<SimpleRandomGenerator>)simpleGenerator setMean: (double)mean

Use this create message if the generator to be attached is a Simple one:

Phase: Setting
• - setMean: (double)mean

The setMean: method sets the mean of the distribution.

Phase: Using
• - (double)getSampleWithMean: (double)mean

The getSampleWithMean: method returns a sample value from a distribution
with the specified mean.

• - (double)getMean

The getMean method returns the mean of the distribution.

Random

236

GammaDist

Name
GammaDist — Gamma distribution

Description
A well-known continuous probability distribution returning doubles

Protocols adopted by GammaDist
DoubleDistribution (see page 234)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setGenerator: (id
<SplitRandomGenerator>)splitGenerator setVirtualGenerator: (unsigned)vGen
setAlpha: (double)alpha setBeta: (double)beta

Use this create message if the generator to be attached is a Split one:

• + create: (id <Zone>)aZone setGenerator: (id
<SimpleRandomGenerator>)simpleGenerator setAlpha: (double)alpha setBeta:

(double)beta

Use this create message if the generator to be attached is a Simple one:

Phase: Setting
• - setAlpha: (double)alpha setBeta: (double)beta

The setAlpha:setBeta: method sets the alpha and beta values for the gamma
distribution.

Phase: Using
• - (double)getSampleWithAlpha: (double)alpha withBeta: (double)beta

The getSampleWithAlpha:withBeta: method returns a sample value from a
Gamma distribution with the specified alpha and beta values.

• - (double)getBeta

The getBeta method returns the beta value.

• - (double)getAlpha

The getAlpha method returns the alpha value.

Random

237

IntegerDistribution

Name
IntegerDistribution — Integer Distribution

Description
A probability distribution that returns integer sample values.

Protocols adopted by IntegerDistribution
ProbabilityDistribution (see page 256)

Methods

Phase: Using
• - (int)getIntegerSample

The getIntegerSample method returns an integer sample value.

Random

238

InternalState

Name
InternalState — Archiving routines for internal generator and distribution state.

Description
Methods to save the internal state of an object (generator, distribution) to a memory buffer allocated by
the calling program, and to set the state of an object from previously saved state data, provided in a
memory buffer.

NOTE: the putStateInto/setStateFrom methods are NOT portable across architectures, since they store
integers and doubles using different byte orders. A portable storage method may be provided in the next
release.

Protocols adopted by InternalState
None

Methods

Phase: Using
• - (unsigned)getMagic

• - (void)setStateFrom: (void *)buffer

• - (void)putStateInto: (void *)buffer

• - (unsigned)getStateSize

Specifies the minimum buffer size needed.

Random

239

LCG1gen

Name
LCG1gen — Linear Congruential Generator 1

Description
With the parameters: a = 1,664,525 and c = 1,013,904,223 this generator has a single full cycle of length
m.

Protocols adopted by LCG1gen
LCGgen (see page 240)

CREATABLE (see page 44)

Methods
None

LCG2gen

Name
LCG2gen — Linear Congruential Generator 2

Description
With the parameters: a = 69,069 and c = 1,013,904,223 this generator has a single full cycle of length m.

Protocols adopted by LCG2gen
LCGgen (see page 240)

CREATABLE (see page 44)

Methods
None

Random

240

LCG3gen

Name
LCG3gen — Linear Congruential Generator 3

Description
With the parameters: a = 1,664,525 and c = 152,193,325 this generator has a single full cycle of length
m.

Protocols adopted by LCG3gen
LCGgen (see page 240)

CREATABLE (see page 44)

Methods
None

LCGgen

Name
LCGgen — Linear Congruential Generator

Description
This classic generator relies on controlled overflow at 32 bits. This requires that unsigned be a 32bit
value that follows ANSI C rules. Knuth claims that the adder c does not matter much, as long as it has
no factors in common with the modulus 2^32.

NOT recommended for serious use; these are included for historical reasons (compatibility with earlier
releases).

Protocols adopted by LCGgen
SimpleRandomGenerator (see page 261)

Methods
None

Random

241

LogNormalDist

Name
LogNormalDist — Log-Normal distribution

Description
A well-known continuous probability distribution returning doubles.

Protocols adopted by LogNormalDist
Normal (see page 245)

CREATABLE (see page 44)

Methods
None

MRG5gen

Name
MRG5gen — Multiple Recursive [LCG] Generator 5

Description
This generator has a single full cycle of length (2^31-1)^5 - 1, i.e. 2^154 < cycle < 2^155.

Protocols adopted by MRG5gen
MRGgen (see page 243)

CREATABLE (see page 44)

Methods
None

Random

242

MRG6gen

Name
MRG6gen — Multiple Recursive [LCG] Generator 6

Description
This generator has a single full cycle of length (2^31-1)^6 - 1, i.e. 2^185 < cycle < 2^186.

Protocols adopted by MRG6gen
MRGgen (see page 243)

CREATABLE (see page 44)

Methods
None

MRG7gen

Name
MRG7gen — Multiple Recursive [LCG] Generator 7

Description
This generator has a single full cycle of length (2^31-1)^7 - 1, i.e. 2^216 < cycle < 2^217.

Protocols adopted by MRG7gen
MRGgen (see page 243)

CREATABLE (see page 44)

Methods
None

Random

243

MRGgen

Name
MRGgen — Multiple Recursive [LCG] Generator

Description
These generators require k multipliers and k past values to be kept. In their paper, the authors investigate
MRG's of order k from 1 to 7. They provide several sets of parameters which they recommend out of a
large number that were tested. Generally, the quality of the generators increases with k.

Protocols adopted by MRGgen
SimpleRandomGenerator (see page 261)

Methods
None

MT19937gen

Name
MT19937gen — 'Mersenne Twister' Twisted GFSR generator

Description
This generator has a single cycle of length 2^19937-1.

Protocols adopted by MT19937gen
SimpleRandomGenerator (see page 261)

CREATABLE (see page 44)

Methods
None

Random

244

MWCAgen

Name
MWCAgen — Multiply-With-Carry generator

Description
This generator is claimed to be strictly periodic, with a period > 2^59. (There's possibly two such
cycles.)

Protocols adopted by MWCAgen
SimpleRandomGenerator (see page 261)

CREATABLE (see page 44)

Methods
None

MWCBgen

Name
MWCBgen — Multiply-With-Carry generator

Description
This generator implements an alternate manner of conjoining the two components (differs from
MWCA). This generator is claimed to be strictly periodic, with a period > 2^59. (There's possibly two
such cycles.)

Protocols adopted by MWCBgen
SimpleRandomGenerator (see page 261)

CREATABLE (see page 44)

Methods
None

Random

245

Normal

Name
Normal — Internal

Protocols adopted by Normal
DoubleDistribution (see page 234)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setGenerator: (id
<SplitRandomGenerator>)splitGenerator setVirtualGenerator: (unsigned)vGen
setMean: (double)mean setStdDev: (double)sdev

Use this create message if the generator to be attached is a Split one and
you wish to specify the standard deviation:

• + create: (id <Zone>)aZone setGenerator: (id
<SplitRandomGenerator>)splitGenerator setVirtualGenerator: (unsigned)vGen
setMean: (double)mean setVariance: (double)variance

Use this create message if the generator to be attached is a Split one and
you wish to specify the variance:

• + create: (id <Zone>)aZone setGenerator: (id
<SimpleRandomGenerator>)simpleGenerator setMean: (double)mean setStdDev:

(double)sdev

Use this create message if the generator to be attached is a Simple one
and you wish to specify the standard deviation:

• + create: (id <Zone>)aZone setGenerator: (id
<SimpleRandomGenerator>)simpleGenerator setMean: (double)mean setVariance:

(double)variance

Use this create message if the generator to be attached is a Simple one
and you wish to specify the variance:

Phase: Setting
• - setMean: (double)mean setStdDev: (double)sdev

The setMean:setStdDev: method sets the mean and the standard deviation of
the distribution.

• - setMean: (double)mean setVariance: (double)variance

The setMean:setVariance: method sets the mean and the variance of the
distribution.

Phase: Using
• - (double)getSampleWithMean: (double)mean withStdDev: (double)sdev

Random

246

The getSampleWithMean:withStdDev: method returns a sample value drawn from
a distribution with the specified mean and standard deviation.

• - (double)getSampleWithMean: (double)mean withVariance: (double)variance

The getSampleWithMean:withVariance: method returns a sample value drawn
from a distribution with the specified mean and variance.

• - (double)getStdDev

The getStdDev method returns the standard deviation of the distribution.

• - (double)getVariance

The getVariance method returns the variance of the distribution.

• - (double)getMean

The getMean method returns the mean of the distribution.

NormalDist

Name
NormalDist — Normal (Gaussian) distribution

Description
A well-known continuous probability distribution returning doubles.

Protocols adopted by NormalDist
Normal (see page 245)

CREATABLE (see page 44)

Methods
None

Random

247

PMMLCG1gen

Name
PMMLCG1gen — Prime Modulus Multiplicative Linear Congruential Generator 1

Description
With parameters a = 16,807 and m = 2,147,483,647, this generator has a single full cycle of length (m-
1).

Protocols adopted by PMMLCG1gen
PMMLCGgen (see page 251)

CREATABLE (see page 44)

Methods
None

PMMLCG2gen

Name
PMMLCG2gen — Prime Modulus Multiplicative Linear Congruential Generator 2

Description
With parameters a = 48,271 and m = 2,147,483,647, this generator has a single full cycle of length (m-
1).

Protocols adopted by PMMLCG2gen
PMMLCGgen (see page 251)

CREATABLE (see page 44)

Methods
None

Random

248

PMMLCG3gen

Name
PMMLCG3gen — Prime Modulus Multiplicative Linear Congruential Generator 3

Description
With parameters a = 69,621 and m = 2,147,483,647, this generator has a single full cycle of length (m-
1).

Protocols adopted by PMMLCG3gen
PMMLCGgen (see page 251)

CREATABLE (see page 44)

Methods
None

PMMLCG4gen

Name
PMMLCG4gen — Prime Modulus Multiplicative Linear Congruential Generator 4

Description
With parameters a = 45,991 and m = 2,147,483,647, this generator has a single full cycle of length (m-
1). This is one of the component generators of the CLOG4.

Protocols adopted by PMMLCG4gen
PMMLCGgen (see page 251)

CREATABLE (see page 44)

Methods
None

Random

249

PMMLCG5gen

Name
PMMLCG5gen — Prime Modulus Multiplicative Linear Congruential Generator 5

Description
With parameters a = 207,707 and m = 2,147,483,543, this generator has a single full cycle of length (m-
1). This is one of the component generators of the CLOG4.

Protocols adopted by PMMLCG5gen
PMMLCGgen (see page 251)

CREATABLE (see page 44)

Methods
None

PMMLCG6gen

Name
PMMLCG6gen — Prime Modulus Multiplicative Linear Congruential Generator 6

Description
With parameters a = 138,556 and m = 2,147,483,423, this generator has a single full cycle of length (m-
1). This is one of the component generators of the CLOG4.

Protocols adopted by PMMLCG6gen
PMMLCGgen (see page 251)

CREATABLE (see page 44)

Methods
None

Random

250

PMMLCG7gen

Name
PMMLCG7gen — Prime Modulus Multiplicative Linear Congruential Generator 7

Description
With parameters a = 49,689 and m = 2,147,483,323, this generator has a single full cycle of length (m-
1). This is one of the component generators of the CLOG4.

Protocols adopted by PMMLCG7gen
PMMLCGgen (see page 251)

CREATABLE (see page 44)

Methods
None

PMMLCG8gen

Name
PMMLCG8gen — Prime Modulus Multiplicative Linear Congruential Generator 8

Description
With parameters a = 40,014 and m = 2,147,483,563, this generator has a single full cycle of length (m-
1). This is one of the component generators of the C2LOGX.

Protocols adopted by PMMLCG8gen
PMMLCGgen (see page 251)

CREATABLE (see page 44)

Methods
None

Random

251

PMMLCG9gen

Name
PMMLCG9gen — Prime Modulus Multiplicative Linear Congruential Generator 9

Description
With parameters a = 40,692 and m = 2,147,483,399, this generator has a single full cycle of length (m-
1). This is one of the component generators of the C2LOGX.

Protocols adopted by PMMLCG9gen
PMMLCGgen (see page 251)

CREATABLE (see page 44)

Methods
None

PMMLCGgen

Name
PMMLCGgen — Prime Modulus Multiplicative Linear Congruential Generator

Description
These generator have single full cycle of length (m-1).

Protocols adopted by PMMLCGgen
SimpleRandomGenerator (see page 261)

Methods
None

Random

252

PSWBgen

Name
PSWBgen — Subtract-with-borrow Congruential Generator with prime modulus

Description
PSWB is an improvement on SWB in that the use of a prime modulus guarantees a single full cycle. It's
slower, of course.

Protocols adopted by PSWBgen
SimpleRandomGenerator (see page 261)

CREATABLE (see page 44)

Methods
None

Random

253

PoissonDist

Name
PoissonDist — Poisson distribution

Description
A distribution used to model the integer number of occurrences of some event over an interval of time or
space.

Protocols adopted by PoissonDist
UnsignedDistribution (see page 271)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setGenerator: (id
<SplitRandomGenerator>)generator setVirtualGenerator: (unsigned)vGen
setOccurRate: (double)anOccurRate setInterval: (double)anInterval

Use this create message if the generator to be attached is a Split one and
both the occurrence rate and the interval are to be set at create time:

• + create: (id <Zone>)aZone setGenerator: (id
<SimpleRandomGenerator>)generator setOccurRate: (double)anOccurRate
setInterval: (double)anInterval

Use this create message if the generator to be attached is a Simple one
and both the occurrence rate and the interval are set at create time:

Phase: Setting
• - setOccurRate: (double)anOccurRate

The setOccurRate method only sets the occurRate parameter; the interval
parameter is left unchanged from its previous or initialized value

• - setOccurRate: (double)anOccurRate setInterval: (double)anInterval

The setOccurRate:setInterval method sets both the occurrence rate and the
interval parameters.

• - setInterval: (double)anInterval

The setInterval method only sets the interval parameter; the occurRate
parameter is left unchanged from its previous or initialized value

Phase: Using

Random

254

• - (unsigned)getUnsignedSampleWithOccurRate: (double)anOccurRate
withInterval: (double)anInterval

The getUnsignedSampleWithOccurRate:andInterval method returns a sample
value for the specified occurrence rate and interval. Does not change the
the distribution's parameter values set by the setter methods.

• - (unsigned)getUnsignedSampleWithInterval: (double)anInterval

The getUnsignedSampleWithInterval method returns a sample value using the
distribution's current occurrence rate and new interval value. Causes an
error if the occurrence rate has not been previously set.

• - (double)getInterval

The getInterval method returns the interval parameter.

• - (double)getOccurRate

The getOccurRate method returns the occurrence rate parameter.

Random

255

ProbabilityDistribution

Name
ProbabilityDistribution — Probability Distribution

Description
A process for generating a sequence of random numbers matching the frequencies defined by a specific
distribution function. The process is driven by input from a supplied uniform random generator.

Protocols adopted by ProbabilityDistribution
SwarmObject (see page 211)

InternalState (see page 238)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setGenerator: (id

<SimpleRandomGenerator>)simpleGenerator

Use this create message if the generator to be attached is a Simple one:

• + create: (id <Zone>)aZone setGenerator: (id
<SplitRandomGenerator>)splitGenerator setVirtualGenerator: (unsigned)vGen

Use this create message if the generator to be attached is a Split one:

• + createWithDefaults: (id <Zone>)aZone

The createWithDefaults method creates a distribution object with a
default set of seeds and parameters, and its own private generator.

Phase: Setting
• - reset

The reset method resets the currentCount and other state data.

• - setGenerator: (id <SimpleRandomGenerator>)simpleGenerator

Use this message if the generator to be attached is a Simple one:

• - setGenerator: (id <SplitRandomGenerator>)splitGenerator
setVirtualGenerator: (unsigned)vGen

Use this message if the generator to be attached is a Split one:

Phase: Using
• - (unsigned long long int)getCurrentCount

The getCurrentCount method returns the count of variates generated.

Random

256

• - (BOOL)getOptionsInitialized

The getOptionsInitialized returns the value of the parameter.

• - (unsigned)getVirtualGenerator

The getVirtualGenerator returns the number of the virtual generator used.

• - (id <BasicRandomGenerator>)getGenerator

The getGenerator method returns the id of the generator.

RWC2gen

Name
RWC2gen — 2-lag Recursion With Carry generator

Description
This generator is a 2-lag MWC generator implemented using 64-bit math.

Protocols adopted by RWC2gen
SimpleRandomGenerator (see page 261)

CREATABLE (see page 44)

Methods
None

RWC8gen

Name
RWC8gen — Multiply With Carry generator ("The Mother of all RNG's")

Description
This generator is a combination of 2 16-bit 8-lag Recursion-With-Carry generators.

Protocols adopted by RWC8gen
SimpleRandomGenerator (see page 261)

CREATABLE (see page 44)

Methods
None

Random

257

RandomBitDist

Name
RandomBitDist — Random Bit Distribution

Description
A generator that returns uniformly distributed single bit values (i.e. fair coin tosses).

Protocols adopted by RandomBitDist
BooleanDistribution (see page 228)

CREATABLE (see page 44)

Methods

Phase: Using
• - (BOOL)getCoinToss

The getCoinToss method returns a YES or NO value.

SCGgen

Name
SCGgen — Subtractive Congruential Generator

Description
SCG is in the Lagged Fibonacci class of generators. These generators use a basic algorithm of the form
X_n = f(X_(n-r),X_(n-s)) mod m; r>s The function f is typically xor, addition, subtraction,
multiplication or subtraction with carry. It uses simpler math than a basic LCG, but keeps a larger state.

NOT recommended for serious use; these are included for historical reasons (compatibility with earlier
releases).

Protocols adopted by SCGgen
SimpleRandomGenerator (see page 261)

CREATABLE (see page 44)

Methods
None

Random

258

SWB1gen

Name
SWB1gen — Subtract-with-borrow Congruential Generator 1

Description
With the parameters r = 37 and s = 24, this generator has 64 cycles of length 10^354.

Protocols adopted by SWB1gen
SWBgen (see page 259)

CREATABLE (see page 44)

Methods
None

SWB2gen

Name
SWB2gen — Subtract-with-borrow Congruential Generator 2

Description
With the parameters r = 24 and s = 19, this generator has 1536 cycles of length 10^228.

Protocols adopted by SWB2gen
SWBgen (see page 259)

CREATABLE (see page 44)

Methods
None

Random

259

SWB3gen

Name
SWB3gen — Subtract-with-borrow Congruential Generator 3

Description
With the parameters r = 21 and s = 6, this generator has 192 cycles of length 10^200.

Protocols adopted by SWB3gen
SWBgen (see page 259)

CREATABLE (see page 44)

Methods
None

SWBgen

Name
SWBgen — Subtract-with-borrow Congruential Generator

Description
These generators use a basic algorithm of the form X_n = f(X_(n-r),X_(n-s)) mod m; r>s The function f
is typically xor, addition, subtraction, multiplication or subtraction with carry. It uses simpler math than
a basic LCG, but keeps a larger state.

Protocols adopted by SWBgen
SimpleRandomGenerator (see page 261)

Methods
None

Random

260

SimpleGenerator

Name
SimpleGenerator — Internal

Protocols adopted by SimpleGenerator
None

Methods

Phase: Creating
• + create: (id <Zone>)aZone setStateFromSeeds: (unsigned *)seeds

• + create: (id <Zone>)aZone setStateFromSeed: (unsigned)seed

Phase: Using
• - (unsigned long long int)getCurrentCount

The getCurrentCount method returns the count of variates generated.

• - (long double)getLongDoubleSample

The getLongDoubleSample method returns a random floating point number of
size long double, uniformly distributed in the range [0.0, 1.0). It uses 2
calls to -getUnsignedSample to fill the mantissa. Note: use of this method
is not portable between architectures.

• - (double)getDoubleSample

The getDoubleSample method returns a random floating point number of size
double, uniformly distributed in the range [0.0, 1.0). It uses 2 calls to -
getUnsignedSample to fill the mantissa.

• - (double)getThinDoubleSample

The getThinDoubleSample method returns a random floating point number of
size double, uniformly distributed in the range [0.0, 1.0). It uses 1 call
to -getUnsignedSample to fill the mantissa.

• - (float)getFloatSample

The getFloatSample method returns a random floating point number of size
float, uniformly distributed in the range [0.0, 1.0). It uses 1 call to -
getUnsignedSample to fill the mantissa.

• - (unsigned)getUnsignedSample

The getUnsignedSample method returns a random unsigned integer uniformly
distributed over [0,unsignedMax].

Random

261

SimpleRandomGenerator

Name
SimpleRandomGenerator — A Simple (non-split) generator.

Description
This protocol covers all implemented non-split generators.

Protocols adopted by SimpleRandomGenerator
BasicRandomGenerator (see page 225)

SimpleGenerator (see page 260)

Methods
None

Random

262

SplitGenerator

Name
SplitGenerator — Internal

Protocols adopted by SplitGenerator
None

Methods

Phase: Creating
• + create: (id <Zone>)aZone setA: (unsigned)A setV: (unsigned)v setW:
(unsigned)w setStateFromSeeds: (unsigned *)seeds

• + create: (id <Zone>)aZone setA: (unsigned)A setV: (unsigned)v setW:
(unsigned)w setStateFromSeed: (unsigned)seed

Phase: Setting
• - initAll

The initAll method resets the state of all the virtual generators to the
start of segment #0.

• - initGenerator: (unsigned)vGen

The initGenerator method resets the state of a virtual generator to the
start of segment #0.

Phase: Using
• - (unsigned long long int)getCurrentCount: (unsigned)vGen

The getCurrentCount method returns the current count of the specified
virtual generator (i.e. the number of variates delivered).

• - (unsigned long long int)getCurrentSegment: (unsigned)vGen

The getCurrentSegment method returns the number of the current segment of
the specified virtual generator.

• - (long double)getLongDoubleSample: (unsigned)vGen

The getLongDoubleSample method returns a random floating-point number of
size long double, uniformly distributed in the range [0.0,1.0), from
virtual generator (data stream) vGen. This method uses 2 calls to -
getUnsignedSample to fill the mantissa. Warning: use of this method is not
portable between architectures.

• - (double)getDoubleSample: (unsigned)vGen

Random

263

The getDoubleSample method returns a random floating-point number of size
double, uniformly distributed in the range [0.0,1.0), from virtual
generator (data stream) vGen. This method uses 2 calls to -
getUnsignedSample to fill the mantissa.

• - (double)getThinDoubleSample: (unsigned)vGen

The getThinDoubleSample method returns a random floating-point number of
size double, uniformly distributed in the range [0.0,1.0), from virtual
generator (data stream) vGen. This method uses 1 call to -getUnsignedSample
to fill the mantissa.

• - (float)getFloatSample: (unsigned)vGen

The getFloatSample method returns a random floating-point number of size
float, uniformly distributed in the range [0.0,1.0), from virtual generator
(data stream) vGen. This method uses 1 call to -getUnsignedSample to fill
the mantissa.

• - (unsigned)getUnsignedSample: (unsigned)vGen

The getUnsignedSample method returns a random unsigned integer uniformly
distributed over the interval [0,unsignedMax] from virtual generator (data
stream) vGen.

• - jumpAllToSegment: (unsigned long long int)seg

The jumpAlltoSegment: method resets the state of all the virtual
generators to the start of the specified segment.

• - advanceAll

The advanceAll method resets the state of all the virtual generators to
the start of their next segment.

• - restartAll

The restartAll method resets the state of all the virtual generators to
the start of their current segment.

• - jumpGenerator: (unsigned)vGen toSegment: (unsigned long long int)seg

The jumpGenerator:toSegment: method resets the state of a virtual
generator to the start of the specified segment.

• - advanceGenerator: (unsigned)vGen

The advanceGenerator method resets the state of a virtual generator to
the start of the next segment.

• - restartGenerator: (unsigned)vGen

The restartGenerator method resets the state of a virtual generator to the
start of the current segment.

• - (unsigned)getSegmentLength

The getSegmentLength method returns log2(the current segment length) = w.

• - (unsigned)getNumSegments

The getNumSegments method returns log2(the current number of segments) =
v.

• - (unsigned)getNumGenerators

Random

264

The getNumGenerators method returns the current number of virtual
generators (A).

SplitRandomGenerator

Name
SplitRandomGenerator — A split generator.

Description
This protocol covers the implemented split generators (C2LCGX and C4LCGX.)

Protocols adopted by SplitRandomGenerator
BasicRandomGenerator (see page 225)

SplitGenerator (see page 263)

Methods
None

TGFSRgen

Name
TGFSRgen — Twisted GFSR generator

Description
With properly chosen parameters, these generators have a single cycle of length 2^(w*N) -1.

Protocols adopted by TGFSRgen
SimpleRandomGenerator (see page 261)

Methods
None

Random

265

TT403gen

Name
TT403gen — A single long generator recommended for use.

Description
A single long generator recommended for use.

Protocols adopted by TT403gen
TGFSRgen (see page 264)

CREATABLE (see page 44)

Methods
None

TT775gen

Name
TT775gen — A single long generator recommended for use.

Description
A single long generator recommended for use.

Protocols adopted by TT775gen
TGFSRgen (see page 264)

CREATABLE (see page 44)

Methods
None

Random

266

TT800gen

Name
TT800gen — A single long generator recommended for use.

Description
A single long generator recommended for use.

Protocols adopted by TT800gen
TGFSRgen (see page 264)

CREATABLE (see page 44)

Methods
None

Random

267

UniformDoubleDist

Name
UniformDoubleDist — Uniform Double Distribution

Description
A generator of floating point values uniformly distributed across a half-open interval [min,max). (The
interval includes the lower endpoint but excludes the upper endpoint.) NOTE: Setting minValue ==
maxValue is allowed (and returns minValue).

Protocols adopted by UniformDoubleDist
DoubleDistribution (see page 234)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setGenerator: (id
<SplitRandomGenerator>)splitGenerator setVirtualGenerator: (unsigned)vGen
setDoubleMin: (double)minValue setMax: (double)maxValue

Use this create message if the generator to be attached is a Split one:

• + create: (id <Zone>)aZone setGenerator: (id
<SimpleRandomGenerator>)simpleGenerator setDoubleMin: (double)minValue
setMax: (double)maxValue

Use this create message if the generator to be attached is a Simple one:

Phase: Setting
• - setDoubleMin: (double)minValue setMax: (double)maxValue

The setDoubleMin:setMax method sets the minimum and maximum floating point
values of the distribution.

Phase: Using
• - (double)getDoubleWithMin: (double)minValue withMax: (double)maxValue

The getDoubleWithMin:withMax: method returns a floating point value
within the range [min, max).

• - (double)getDoubleMax

The getDoubleMax method returns the maximum floating point value in the
specified range.

• - (double)getDoubleMin

Random

268

The getDoubleMin method returns the minimum floating point value in the
specified range.

Random

269

UniformIntegerDist

Name
UniformIntegerDist — Uniform Integer Distribution

Description
A generator of integral values uniformly distributed across a closed interval [min,max]. (The interval
includes both its endpoints.) Setting minValue == maxValue is allowed (and returns minValue).

Protocols adopted by UniformIntegerDist
IntegerDistribution (see page 237)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setGenerator: (id
<SplitRandomGenerator>)splitGenerator setVirtualGenerator: (unsigned)vGen
setIntegerMin: (int)minValue setMax: (int)maxValue

Use this create message if the generator to be attached is a Split one:

• + create: (id <Zone>)aZone setGenerator: (id
<SimpleRandomGenerator>)simpleGenerator setIntegerMin: (int)minValue
setMax: (int)maxValue

Use this create message if the generator to be attached is a Simple one:

Phase: Setting
• - setIntegerMin: (int)minValue setMax: (int)maxValue

The setIntegerMin:setMax: method sets the minimum and maximum integer
values to be returned

Phase: Using
• - (int)getIntegerWithMin: (int)minValue withMax: (int)maxValue

The getIntegerWithMin:withMax: returns an integer within the interval
[min, max].

• - (int)getIntegerMax

The getIntegerMax method returns the maximum integer value.

• - (int)getIntegerMin

The getIntegerMin method returns the minimum integer value.

Random

270

UniformUnsignedDist

Name
UniformUnsignedDist — Uniform Unsigned Distribution

Description
A generator of non-negative integral values uniformly distributed across a closed interval [min,max].
(The interval includes both its endpoints.) Setting minValue == maxValue is allowed (and returns
minValue).

Protocols adopted by UniformUnsignedDist
UnsignedDistribution (see page 271)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone setGenerator: (id
<SplitRandomGenerator>)splitGenerator setVirtualGenerator: (unsigned)vGen
setUnsignedMin: (unsigned)minValue setMax: (unsigned)maxValue

Use this create message if the generator to be attached is a Split one:

• + create: (id <Zone>)aZone setGenerator: (id
<SimpleRandomGenerator>)simpleGenerator setUnsignedMin: (unsigned)minValue
setMax: (unsigned)maxValue

Use this create message if the generator to be attached is a Simple one:

Phase: Setting
• - setUnsignedMin: (unsigned)minValue setMax: (unsigned)maxValue

The setUnsignedMin:setMax: method sets the minimum and maximum unsigned
values to be returned

Phase: Using
• - (unsigned)getUnsignedWithMin: (unsigned)minVal withMax: (unsigned)maxVal

The getUnsignedWithMin:withMax: returns an unsigned integer within the
interval [min, max].

• - (unsigned)getUnsignedMax

The getUnsignedMax method returns the maximum unsigned value.

• - (unsigned)getUnsignedMin

The getUnsignedMin method returns the minimum unsigned value.

Random

271

UnsignedDistribution

Name
UnsignedDistribution — Unsigned Distribution

Description
A probability distribution that returns non-negative integer sample values.

Protocols adopted by UnsignedDistribution
ProbabilityDistribution (see page 256)

Methods

Phase: Using
• - (unsigned)getUnsignedSample

The getUnsignedSample method returns a non-negative integer sample value.

General

Name
random — Module for random number generation

Description
This module consists of a set of random number generation classes and a set of distribution classes for
transforming random number sequences into various simulated probability distributions.

Simtools Library
Overview

Simtools is the stdlib of Swarm. In other words, it is the library where we have parked many
miscellaneous classes which, while very useful, are not specific enough to be placed in any other
library. So, for example, simtools contains InFile, ObjectLoader and other I/O classes. Simtools
contains all non-GUI classes - for the miscellaneous classes that do depend on a GUI toolkit being
present at link-time, see the documentation for the Simtoolsgui Library (see page 291) library.

1. Dependencies
Following are the other header files imported by <simtools.h>:

#import <objectbase.h>

 The objectbase library interface is included to provide the basic object support. The random library is
no longer included by default. You will need to explicitly include it to use the default random number
generators.

Special global functions - global.h. Users need to include simtools.h in their code in order to call
initSwarm() but also in order to get access to a set of important pre-initialized objects which are
generated in every simulation (e.g. probeDisplayManager).

2. Compatibility
• 1.0.5 -> 1.1. simtools has been split into two: simtools and Simtoolsgui Library (see page 291). The

latter now contains all the classes which were GUI-related, so that users can compile and link pure-
batch mode simulations (i.e. simulations that don't require Tk/Tcl/BLT, Java AWT or any GUI
toolkit).

• 1.0.4 -> 1.0.5. GUISwarm now inherits from GUIComposite. Because GUIComposite handles the
passthru of archiving keys to tkobjc primitives, the method setControlPanelGeometryRecordName is
no longer needed; instead, the macro SET_WINDOW_GEOMETRY_RECORD_NAME is provided.

• 1.0.3 -> 1.0.4. All functions maintain backward compatibility. There are additional features, however,
and features previously undocumented.

Documentation and Implementation Status

The simtools library has undergone an upgrade to the status of a library as of 1.0.4. This means the interface now
conforms to the library interfaces specifications, the format of the documentation now reflects this. Other than new
features, there should be no affect on the user.

Revision History
2003-06-21 simtools.h mgd

(__objc_exec_class_for_all_init_modules): Declare. (initSwarmArguments, initSwarmAppArguments): Call
__objc_exec_class_for_all_init_modules before _initSwarm_.

2000-07-11 simtools.h mgd

 Remove inclusion of externvar.h and declaration of swarmGUIMode (moved to swarm.h). Include swarm.h.

2000-03-28 mgd

 Swarmdocs 2.1.1 frozen.

2000-02-29 mgd

 Swarmdocs 2.1 frozen.

2000-02-18 simtools.h mgd

 Add Zone argument conformance to +create:* methods throughout.

1999-09-16 simtools.h mgd

 Add inhibitExecutableSearchFlag argument.

1999-07-05 simtools.h alex

(initSwarmAppArguments): Fixed macro, STRINGIFY(APPNAME) -> APPNAME_STRING.

1999-06-23 simtools.h mgd

 Reflect these changes.

1999-06-21 simtools.h alex

 (InFile, OutFile, AppendFile, ObjectSaver, ObjectLoader): Markup with `//x:' doc-string as deprecated protocols.
Move explanatory text originally in `//D:' markup to new tag, where appropriate.

1999-06-21 simtools.h alex

 (_initSwarm_, STRINGIFY, STRINGIFYSYM, APPNAME_STRING, APPVERSION_STRING,
BUGADDRESS_STRING): Remove, hide from user in new include'd initSwarm.h.

1999-06-10 simtools.h mgd

 Stringify application name, version, and bug address. (Don't require quoting from make.)

1999-06-09 simtools.h alex

 (initSwarm): Redefine as a macro. Call new internal function _initSwarm_(). If not explicitly set by the macro, pass
APPNAME, BUGADDRESS, APPVERSION which will be passed from the application Makefile to the internal
initSwarm(). (initSwarmBatch): Likewise. (initSwarmApp): Likewise. (initSwarmAppBatch): Likewise.
(initSwarmAppOptions): Likewise. (initSwarmAppOptionsBatch): Likewise (_initSwarm_): Define internal
function.

1999-05-29 simtools.h mgd

 Include externvar.h.

1999-05-28 simtools.h mgd

 Use `externvar' for swarmGUIMode.

1999-02-26 simtools.h mgd

 Add CREATABLE tags to all non-abstract protocols.

1999-02-07 simtools.h mgd

 (InFile): Add a warning about error return behavior.

1998-12-11 simtools.h vjojic

 Remove ListShuffler protocol and ListShuffler class definition

1998-08-23 simtools.h mgd

 (ListShuffler): New protocol.

1998-08-20 simtools.h mgd

 (ObjectLoader): Add it.

1998-07-08 simtools.h mgd

 (ActiveOutFile): Remove protocol and class object.

1998-06-17 Makefile.am mgd

 Include from refbook/ instead of src/.

1998-06-15 Makefile.am mgd

 (MODULE): New variable. Include Makefile.rules from src. Remove everything else.

1998-06-12 simtools00.sgml, simtoolscont.sgml mgd

 Update IDs to SWARM.module.SGML.type.

1998-06-06 simtools.ent mgd

 Use public identifiers.

1998-06-05 Makefile.am mgd

 (swarm_ChangeLog): Add.

1998-06-03 simtools.h mgd

 Update documentation tags.

1998-05-23 Makefile.am mgd

 New file.

1998-05-23 simtools.ent.in mgd

 New file.

1998-05-23 simtools.ent mgd

 Removed.

1998-05-22 mgd

 Begin revision log.

1998-04-16 simtools.h mgd

 Move tagged documentation to the respective protocols definition.

1998-04-06 simtools.h mgd

 Declare new function initSwarmArguments.

1998-02-26 simtools.h mgd

 Remove ControlPanel, WindowGeometryRecordName, CompositeWindowGeometryRecordName, ActioonCache,
ProbeDisplay, CompleteProbeDisplay, ProbeDisplayManager, GUIComposite, GUISwarm, ActiveGraph protocols
(moved to simtoolsgui). Remove declaration of probeDisplayManager. Remove mention of @classes ActionCache,
ProbeDisplay, CompleteProbeDisplay, ProbeDisplayManager, GUISwarm, and ActiveGraph. Don't include
GUISwarm.h.

1998-01-27 simtools.h mgd

 Likewise.

1998-01-24 simtools.h mgd

 Don't include tkobjc.h.

1998-01-20 simtools.h mgd

 Add copyright header.

1998-01-15 simtools.h mgd

 (SET_WINDOW_GEOMETRY_RECORD_NAME): Add convenience macro. ProbeDisplay and
CompleteProbeDisplay derive from WindowGeometryRecordName protocol.
CompositeWindowGeometryRecordName: New protocol. ActionCache and GUIComposite protocols derive from it.

1998-01-14 simtools.h mgd

 Drop windowGeometryRecordNameForComponent and windowGeometryRecordName fro
WindowGeometryRecordName protocol.
(SET_COMPONENT_WINDOW_GEOMETRY_RECORD_NAME_FOR): New macro.
(SET_COMPONENT_WINDOW_GEOMETRY_RECORD_NAME): New macro. (CREATE_PROBE_DISPLAY,
CREATE_COMPLETE_PROBE_DISPLAY, CREATE_ARCHIVED_PROBE_DISPLAY,
CREATE_ARCHIVED_COMPLETE_PROBE_DISPLAY): Rename to be in caps.

1998-01-13 simtools.h mgd

 (_createProbeDisplay, _createCompleteProbeDisplay, createArchivedProbeDisplayNamed,
createArchivedCompleteProbeDisplayNamed): Declare new functions.
(CREATE_ARCHIVED_PROBE_DISPLAY): New macro to pass variable variable name through to archiving
functions above. (CREATE_ARCHIVED_COMPLETE_PROBE_DISPLAY): Likewise. (ProbeDisplayManager):
Replace setWindowGeometryRecordName versions of createProbeDisplayFor with
createArchivedProbeDisplayFor:variableName: and createArchivedCompleteProbeDisplayFor:variableName.
(CREATE_PROBE_DISPLAY, CREATE_COMPLETE_PROBE_DISPLAY): Define macros.

1998-01-13 simtools.h mgd

 Add dropProbeDisplaysFor: to the ProbeDisplayManager protocol.

1998-01-12 simtools.h mgd

 Declare buildWindowGeometryRecordName. New protocol WindowGeometryRecordName, derive ActionCache,
and GUISwarm from it.

1998-01-06 simtools.h mgd

 (Action): Rename setControlPanelGeometryRecordName to setWindowGeometryRecordName. (ControlPanel):
Remove setControlPanelGeometryRecordName.

1997-12-19 simtools.h mgd

 (ActionCache): Make setScheduleContext a Using phase method. Add setControlPanelGeometryRecordName.
(InFile): Add getline to InFile protocol. Reformatting throughout (remove gratuitous space).

1997-12-18 simtools.h mgd

 Add setWindowGeometryRecordName to ProbeDisplay protocol.

1997-12-10 simtools.h mgd

 Consify toExecute argument of ActionCache sendActionOfType. Consify setBaseName argument of UName
create. Consify argument to UName setBaseName. Consify return of UName getNewName. Consify withName
argument of InFile create. Consify withName argument of OutFile create. Consify argument to OutFile putString.
Consify withName argument of AppendFile create. Consify argument to AppendFile putString.

1997-12-07 simtools.h mgd

(CompleteProbeDisplay): Add getMarkedForDropFlag to protocol.

1997-12-04 simtools.h mgd

 (ProbeDisplayManager): Add setDropImmediatelyFlag.

1997-12-01 simtools.h alex

 Added AppendFile and added reverseOrder method to QSort protocol.

1997-11-29 simtools.h mgd

 Make Object{Loader,Saver} fromFileNamed: arguments const.

1997-11-29 simtools.h mgd

 Add methods below to ProbeDisplayManager protocol.

1997-11-20 simtools.h mgd

 (library-wide): Brought simtools library into conformance with protocol interface standard.

278

AppendFile [Deprecated]

Name
AppendFile — A class for appended file output.

Description
Deprecated: Warning: the error return behavior of these methods is fragile, only end of file is reported
as an error. It is probably not wise to use use this inteface unless your text processing needs are very
simple.

This class subclasses from OutFile, the only functional difference being that it opens a given file in
Append Mode rather than in Overwrite mode.

Protocols adopted by AppendFile
OutFile [Deprecated] (see page 286)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone withName: (const char *)theName

for backward compatibility

• + create: (id <Zone>)aZone setName: (const char *)theName

The create:setName: method is the create method for AppendFiles, where
theName is the name of the file to open.

Simtools

279

InFile [Deprecated]

Name
InFile — Class to perform file input.

Description
Deprecated: Warning: the error return behavior of these methods is fragile, only end of file is reported
as an error. It is probably not wise to use use this inteface unless your text processing needs are very
simple.

This class is (was) intended to simplify the input file-I/O in Swarm. It essentially deals with the detailed
file opening and closing routines thus alleviating the need for C file I/O procedure calls.

Protocols adopted by InFile
SwarmObject (see page 211)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone withName: (const char *)theName

for backward compatibility

• + create: (id <Zone>)aZone setName: (const char *)theName

This is the create method for InFiles, where theName is, of course the
name of the file to open.

Phase: Using
• - (void)drop

The drop method must be called when the user wants to close the file. Only
by dropping the InFile object will the file truly be closed.

• - (int)skipLine

Skips a line.

• - (int)unGetChar: (char)aChar

Returns a character for re-reading.

• - (int)getChar: (char *)aChar

The getChar: method takes a pointer of type char and loads it with an
instance of that type from the open file. In case of failure, the method
returns 0.

• - (int)getFloat: (float *)aFloat

Simtools

280

The getFloat: method takes a pointer of type float and loads it with an
instance of that type from the open file. In case of failure, the method
returns 0.

• - (int)getDouble: (double *)aDouble

The getDouble: method takes a pointer of type double and loads it with an
instance of that type from the open file. In case of failure, the method
returns 0.

• - (int)getUnsignedLong: (unsigned long *)anUnsLong

The getUnsignedLong: method takes a pointer of type unsigned long and
loads it with an instance of that type from the open file. In case of
failure, the method returns 0.

• - (int)getLong: (long *)aLong

The getLong: method takes a pointer of type long and loads it with an
instance of that type from the open file. In case of failure, the method
returns 0.

• - (int)getUnsigned: (unsigned *)anUnsigned

The getUnsigned: method takes a pointer of type unsigned and loads it
with an instance of that type from the open file. In case of failure, the
method returns 0.

• - (int)getInt: (int *)anInt

The getInt: method takes a pointer of type Int and loads it with an
instance of that type from the open file. In case of failure, the method
returns 0.

• - (int)getLine: (char *)aLine

The getLine: method loads the argument string with the characters up to,
but not including a newline character.

• - (int)getWord: (char *)aWord

The getWord: method returns a string that does not contain spaces, tabs,
and newlines.

Simtools

281

NSelect

Name
NSelect — A class to select exactly N elements at random from a collection.

Description
NSelect selects exactly N elements from a collection without repetition. A target collection must be
provided.

Protocols adopted by NSelect
SwarmObject (see page 211)

CREATABLE (see page 44)

Methods

Phase: Using
• + (void)select: (int)n from: aCollection into: bCollection

The select:from:into: method selects exactly N elements from a collection
without repetition into another collection. The selection algorithm is
from Knuth.

Simtools

282

ObjectLoader [Deprecated]

Name
ObjectLoader — A class to load an object's instance variables from a file.

Description
Deprecated: Use the Archiver protocol in the defobj library as a replacement for this ad-hoc format

This class is used to initialize the variables of a target object from a data file. The data file is required to
have a very simple format.

Protocols adopted by ObjectLoader
SwarmObject (see page 211)

CREATABLE (see page 44)

Methods

Phase: Creating
• + load: anObject fromAppDataFileNamed: (const char *)aFileName

The load:fromAppConfigFileNamed: method loads anObject from th
application-specific data file named aFileName. The ObjectLoader class
will open the file, initialize the object with its contents and then close
the file.

• + load: anObject fromAppConfigFileNamed: (const char *)aFileName

The load:fromAppConfigFileNamed: method loads anObject from th
application-specific configuration file named aFileName. The ObjectLoader
class will open the file, initialize the object with its contents and then
close the file.

• + load: anObject fromFileNamed: (const char *)aFileName

The load:fromFileNamed: method loads anObject from the file named
aFileName. The ObjectLoader class will open the file, initialize the
object with its contents and then close the file.

• + load: anObject from: aFileObject

The load:from: method loads anObject from the previously opened
aFileObject without returning an actual instance of the ObjectLoader
class. The FileObject remains open after the method has been called.

Phase: Setting
• - setTemplateProbeMap: (id <ProbeMap>)probeMap

The setTemplateProbeMap: method is used to specify which variables of the
target object(s) should be loaded by the ObjectLoader instance to which
this message was sent.

Simtools

283

• - setFileObject: aFileObject

The setFileObject: method sets the source fileObject which the instance
of the ObjectLoader class should use by sending it this message.

Phase: Using
• - updateCache: exampleTarget

The updateCache: method should be called if an ObjectLoader instance is
going to initialize a large number of objects from the same class.

• - loadObject: anObject

The loadObject: message must be sent to an instance of the ObjectLoader
class in order to initialize the target object from the requested file.

Simtools

284

ObjectSaver [Deprecated]

Name
ObjectSaver — A class to save an object's instance variables to a file.

Description
Deprecated: Use the Archiver protocol in the defobj library as a replacement for this ad-hoc format

This class is used to write an object's variables to a specified file. If only a subset of the variables should
be written out, the set is specified by a template ProbeMap (where the ProbeMap will contain Probes for
those variables which should be saved).

Protocols adopted by ObjectSaver
SwarmObject (see page 211)

CREATABLE (see page 44)

Methods

Phase: Creating
• + save: anObject toFileNamed: (const char *)aFileName

The save:toFileNamed: method saves the entire target object to the file
aFileName.

• + save: anObject toFileNamed: (const char *)aFileName withTemplate: (id

<ProbeMap>)aProbeMap

The save:toFileNamed:withTemplate: method saves the subset of variables
specified in a template from the target object to the file aFileName.

• + save: anObject to: aFileObject

The save:to: method saves the entire target object without actually
returning an instance of ObjectSaver to the user.

• + save: anObject to: aFileObject withTemplate: (id <ProbeMap>)aProbeMap

The save:to:withTemplate: method saves the subset of target object
variables specified in a template from anObject without actually returning
an instance of ObjectSaver to the user.

Phase: Setting
• - setTemplateProbeMap: (id <ProbeMap>)aProbeMap

The setTemplateProbeMap: method is used to specify which variables of the
source object(s) should be saved by the ObjectSaver instance to which this
message was sent.

• - setFileObject: aFileObject

Simtools

285

The setFileObject: method sets the target fileObject which the instance
of the ObjectSaver class should use.

Phase: Using
• - saveObject: anObject

The saveObject: message tells an instance of the ObjectSaver class to
save the state of the target object into the requested file.

Simtools

286

OutFile [Deprecated]

Name
OutFile — A class to perform file output.

Description
Deprecated: Warning: the error return behavior of these methods is fragile, only end of file is reported
as an error. It is probably not wise to use use this inteface unless your text processing needs are very
simple.

This class is intended to simplify output file-I/O in Swarm. It essentially deals with the detailed file
opening and closing routines thus alleviating the need for C file I/O procedure calls.

Protocols adopted by OutFile
SwarmObject (see page 211)

CREATABLE (see page 44)

Methods

Phase: Creating
• + create: (id <Zone>)aZone withName: (const char *)theName

for backward compatibility

• + create: (id <Zone>)aZone setName: (const char *)theName

The create:setName: method opens a file named theName and creates an
Outfile object.

Phase: Using
• - (void)drop

The drop method closes the open file. This method must be called to close
the file.

• - putTab

The putTab method writes a tab into the open file.

• - putNewLine

The putNewline method writes a newline into the open file.

• - putChar: (char)aChar

The putChar: method takes an instance of type char and writes it into the
open file.

• - putFloat: (float)aFloat

Simtools

287

The putFloat: method takes an instance of type float and writes it into
the open file.

• - putDouble: (double)aDouble

The putDouble: method takes an instance of type double and writes it into
the open file.

• - putUnsignedLong: (unsigned long)anUnsLong

The putUnsignedLong: method takes an instance of type unsigned long and
writes it into the open file.

• - putLong: (long)aLong

The putLong: method takes an instance of type long and writes it into the
open file.

• - putUnsigned: (unsigned)anUnsigned

The putUnsigned: method takes an instance of type unsigned and writes it
into the open file.

• - putInt: (int)anInt

The putInt: method takes an instance of type int and writes it into the
open file.

• - putString: (const char *)aString

The putString: method takes an instance of type string and writes it into
the open file.

Simtools

288

QSort

Name
QSort — A class to sort a collection.

Description
QSort is simply a "wrapper" for the C native "qsort" function, as applied to a Swarm collection. The
values will appear in ascending order by default. Reversing the order of a collection can be made by
calling reverseOrderOf. All these methods modify the underlying collection, so any indexes should
always be regenerated.

Protocols adopted by QSort
SwarmObject (see page 211)

CREATABLE (see page 44)

Methods

Phase: Using
• + (void)reverseOrderOf: aCollection

The reverseOrderOf: method reverses the current order of a collection. To
make a "reversed" sort, simply call one of the appropriate "sort" methods
on a collection then call this function on the same collection.

• + (void)sortNumbersIn: aCollection

The sortNumbersIn: method performs integer comparisons on the objects in
the collection using the default "compare" function. The default assumes
that the numbers should be monotonically increasing.

• + (void)sortNumbersIn: aCollection using: (int (*) (const void*, const

void*))comp_fun

The sortNumbersIn:using: method performs integer comparisons on the
objects in the collection with the specified comparison function for the
object.

• + (void)sortObjectsIn: aCollection

The sortObjectsIn: method will sort the objects in the collection with the
"compare' function for the object. If the objects don't provide a compare
function, sortObjectsIn uses the default from the defobj library.

• + (void)sortObjectsIn: aCollection using: (SEL)aSelector

The sortObjectsIn:using: method will sort the objects in the collection
with the specified comparison function for the object.

Simtools

289

UName

Name
UName — A class used to generate unique names (e.g. "critter1", "critter2" etc.)

Description
This class is used to generate unique names (agent0, agent1, agent2...) for objects in a simulation. The
user will typically create an instance of the UName class initialized with a baseName presented either as
a (const char *) or an object of class String. The user can then request new names, again either as (const
char *)'s or as instances of the String class. The user can also reset the counter used to generate the
names in case s/he wants to restart naming objects with the same baseName.

Note: Both in the case of initialization by (const char *) and initialization by an instance of the String
class, the original is copied not stored internally so it is up to the user to free the original (const char *)
or String instance if/when necessary!

Protocols adopted by UName
SwarmObject (see page 211)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setBaseNameObject: aStringObject

The setBaseNameObject: method is used to set the base name given an object
of class String.

• - setBaseName: (const char *)aString

The setBaseName: method is used to set the base name given a const char *.

• + create: (id <Zone>)aZone setBaseNameObject: aStringObject

The create:setBaseNameObject: method is used to create an instance of the
UName class and set the base name given an object of class String. This
method will automatically reset the counter.

• + create: (id <Zone>)aZone setBaseName: (const char *)aString

The create:setBaseNameObject: method is used to create an instance of the
UName class and set the base name given a const char *. This method will
automatically reset the counter.

Phase: Using
• - resetCounter

Resets the counter used as a suffix in the unique names generated.

• - getNewNameObject

Simtools

290

The getNewNameObject generates a new name as a String Object.

• - (const char *)getNewName

The getNewName method generates a new name as a character string.

General

Name
simtools — General simulation tools

Description
A collection of tools that are only loosely related to each other. the class hierarchy is virtually flat.

Macros
• initSwarm(argc, argv)

Initializes the Swarm libraries without version or bug-report-address
information.

• initSwarmApp(argc, argv, version, bugAddress)

Initializes the Swarm libraries for an application.

• initSwarmAppArguments(argc, argv, version, bugAddress, argumentsClass)

Like initSwarmApp, but specifies what class to use for argument parsing,
typically this will be a subclass of Arguments.

• initSwarmAppBatch(argc, argv, version, bugaddress)

Like initSwarmApp, but initializes in batch-mode only

• initSwarmAppOptions(argc, argv, version, bugAddress, options, optionFunc)

Like initSwarmApp, but specifies a parsing function .

• initSwarmAppOptionsBatch(argc, argv, version, bugAddress, options,

optionFunc)

Like initSwarmAppOptions, but initializes in batch-mode only

• initSwarmArguments(argc, argv, argumentsClass)

Like initSwarm, but specifies what class to use for argument parsing,
typically this will be a subclass of Arguments.

• initSwarmBatch(argc, argv)

Initializes the Swarm libraries for batch mode without version or bug
report address information.

Functions
• void __objc_exec_class_for_all_initial_modules()

Simtoolsgui Library
Overview

Simtoolsgui contains all miscellaneous GUI classes. It depends on a GUI toolkit being present at link-
time, see the documentation for the Simtoolsgui Library (see page 291) library for non-GUI classes.

1. Dependencies
Following are the other header files imported by <simtoolsgui.h>:

#import <objectbase.h>
#import <activity.h>

2. Compatibility
• 1.0.5 -> 1.1. This new library has been created it contains all the classes which were GUI-related, so

that users can compile and link pure-batch mode simulations (i.e. simulations that don't require
Tk/Tcl/BLT, Java AWT or any GUI toolkit).

Documentation and Implementation Status

First creation of simtoolsgui documentation.

Revision History
2001-02-07 simtoolsgui.h mgd

 (GUISwarm): Add GETTERS section.

2000-09-20 simtoolsgui.h mgd

(WindowGeometryRecordName): Declare -setSaveSizeFlag:.

2000-09-18 simtoolsgui.h mgd

 Include gui.h. (MessageProbeWidget, MultiVarProbeWidget): Qualify setParent: argument with Frame.
(MessageProbeWidget): Qualify argument to setProbe: with Probe. (SimpleProbeDisplay): Qualify argument to
setProbeMap:. (ProbeDisplayManager): Qualify addProbeDisplay: and removeProbeDisplay: arguments with
CommonProbeDisplay.

2000-08-31 simtoolsgui.h alex

 Add doc string to "doTkEvents" method.

2000-05-18 simtoolsgui.h mgd

 (SimpleProbeDisplay, ProbeDisplay): Remove -getProbemap.

2000-04-28 simtoolsgui.h mgd

 (ActionCache, CommonProbeDisplay, MultiVarProbeWidget): Adopt SwarmObject.

2000-03-28 mgd

 Swarmdocs 2.1.1 frozen.

2000-02-29 mgd

 Swarmdocs 2.1 frozen.

1999-11-23 simtoolsgui.h mgd

 Make ControlState* symbols conform to Symbol.

1999-08-22 simtoolsgui.h mgd

 (ControlPanel, ActionCache, CommonProbeDisplay, SimpleProbeDisplay, CompleteProbeDisplay): Switch from
CREATABLE to RETURNABLE. (SingleProbeDisplay, GUIComposite): Remove CREATABLE. (GUISwarm):
Add ActionCache and ControlPanel return typing to getters.

1999-07-21 simtoolsgui.h vjojic

 Make CommonProbeDisplay protocol CREATABLE. Make SingleProbeDisplay protocol CREATABLE. Add
SimpleProbeDisplay protocol and make it CREATABLE.

1999-05-29 simtoolsgui.h mgd

 Include externvar.h.

1999-05-28 simtoolsgui.h mgd

 Use `externvar' for external variables.

1999-04-26 simtoolsgui.h alex

 (GUIComposite): Add compliance to SwarmObject protocol. Revert this change, since protocol is abstract,
confirmation added to instantiatable protocols.

1999-04-01 simtoolsgui.h vjojic

 Protocol GUISwarm inherits protocol Swarm.

1999-03-31 simtoolsgui.h vjojic

 Add methods getActionCache and getControlPanel to GUISwarm.

1999-02-26 simtoolsgui.h mgd

 Add CREATABLE tags to all non-abstract protocols.

1999-01-31 simtoolsgui.h mgd

(ProbeDisplayManager): Declare -getDropImmediateFlag.

1998-12-31 simtoolsgui.h mgd

 (ActionCache, GUISwarm): Declare -drop.

1998-09-03 simtoolsgui.h mgd

 (CommonProbeDisplay): Declare -getTopLevel.

1998-08-18 simtoolsgui.h mgd

 (SingleProbeDisplay): Add //S and //D.

1998-07-15 simtoolsgui.h mgd

 (CommonProbeDisplay): Remove setProbedObject: and getProbedObject from protocol (moved to
SingleProbeDisplay). (SingleProbeDisplay): New protocol. (CompleteProbeDisplay, SimpleProbeDisplay): Adopt
SingleProbeDisplay instead of CommonProbeDisplay. (MultiVarProbeDisplay): New protocol.
(MultiVarProbeWidget): Replace setProbeList: with setProbeMap:. Rename setLabelingFlag: to
setFieldLabelingFlag:. Rename setAgentNameSelector: to setObjectNameSelector:. Add +createBegin:. Add
MultiVarProbeDisplay class object.

1998-07-14 simtoolsgui.h mgd

 Add MultiVarProbeWidget protocol and class object.

1998-07-10 simtoolsgui.h alex

(MessageProbeWidget): Add phase tags.

1998-07-08 simtoolsgui.h mgd

 (ActiveGraph): Remove protocl and class object.

1998-07-07 simtoolsgui.h mgd

 (MessageProbeWidget): New protocol and class object.

1998-06-17 Makefile.am mgd

 Include from refbook/ instead of src/.

1998-06-17 simtoolsgui00.sgml alex

 Added missing description of activity.h dependency.

1998-06-15 Makefile.am mgd

 (MODULE): New variable. Include Makefile.rules from src. Remove everything else.

1998-06-12 simtoolsgui00.sgml, simtoolsguicont.sgml mgd

 Update IDs to SWARM.module.SGML.type.

1998-06-06 simtoolsgui.ent mgd

 Use public identifiers.

1998-06-05 Makefile.am mgd

 (swarm_ChangeLog): Add.

1998-06-03 simtoolsgui.h mgd

 Update documentation tags. Prefix global references with extern.

1998-05-28 simtoolsgui.h mgd

 Include activity.h.

1998-05-23 Makefile.am mgd

 New file.

1998-05-23 simtoolsgui.ent.in mgd

 New file.

1998-05-23 simtoolsgui.ent mgd

 Removed.

1998-05-22 mgd

 Begin revision log.

1998-05-22 simtoolsgui.h alex

 (ActionCache, probeDisplayManager, initSimtoolsGUI): Added doc tags (//G) to global variables and symbols.
(SET_WINDOW_GEOMETRY_RECORD_NAME,CREATE_PROBE_DISPLAY,
CREATE_COMPLETE_PROBE_DISPLAY, CREATE_ARCHIVED_PROBE_DISPLAY,
CREATE_ARCHIVED_COMPLETE_PROBE_DISPLAY): Added doc tags (//#) for macros.

1998-05-07 simtoolsgui.h mgd

 (_createProbeDisplay, createArchivedProbeDisplayNamed): Return id conforming to ProbeDisplay protocol.
(_createCompleteProbeDisplay, createArchivedCompleteProbeDisplayNamed): Return an object conforming to
CompleteProbeDisplay protocol. (-createProbeDisplayFor:, -createArchivedProbeDisplayFor:variableName:):
Return an object conforming to ProbeDisplay protocol. (-createCompleteProbeDisplayFor:, -
createArchivedCompleteProbeDisplayFor:variableName:): Return an object conforming to the
CompleteProbeDisplay protocol. (-createDefaultProbeDisplayFor:, -
createArchivedDefaultProbeDisplayFor:variableName:): Declare. Return an object conforming to the
CompleteProbeDisplay protocol. (-getMarkedForDrop): Return BOOL.

1998-05-06 simtoolsgui.h mgd

(WindowGeometryRecordName, CompositeWindowGeometryRecordName, GUIComposite): Add phase tags.
(WindowGeometryRecordName, CompositeWindowGeometryRecordName, ControlPanel, ActionCache,
CommonProbeDisplay, ProbeDisplay, CompleteProbeDisplay, ProbeDisplayManager, GUIComposite, GUISwarm,
ActiveGraph): Move //S and //D tags inside protocol.

1998-04-16 simtoolsgui.h mgd

 Add comment tags with documentation.

297

ActionCache

Name
ActionCache — A class to manage threads and Swarms.

Description
A class that provides a smart bag into which actions can be thrown by other threads and Swarms
intended for insertion on it's Swarm's schedule.

Protocols adopted by ActionCache
CompositeWindowGeometryRecordName (see page 300)

SwarmObject (see page 211)

RETURNABLE (see page 66)

Methods

Phase: Creating
• - createProcCtrl

• - setControlPanel: (id <ControlPanel>)cp

Phase: Using
• - waitForControlEvent

• - doTkEvents

A message that processes any input or output events of the Tk toolkit.
Scheduling -doTkEvents ensures Tk keeps the user interface up-to-date.
Without scheduling it as part of the GUI code, the Tk events would just
queue up and never get processed, resulting in a static, unresponsive user
interface.

• - getPanel

• - verifyActions

• - sendQuitAction

• - sendNextAction

• - sendStepAction

• - sendStopAction

• - sendStartAction

• - sendActionOfType: (id <Symbol>)type toExecute: (const char *)cmd

• - deliverActions

Simtoolsgui

298

• - insertAction: actionHolder

• - setScheduleContext: (id <Swarm>)context

CommonProbeDisplay

Name
CommonProbeDisplay — A protocol underlying ProbeDisplay and CompleteProbeDisplay

Description
This protocol provides the common interface to all kinds of ProbeDisplays.

Protocols adopted by CommonProbeDisplay
SwarmObject (see page 211)

WindowGeometryRecordName (see page 311)

Methods

Phase: Using
• - getTopLevel

• - (BOOL)getMarkedForDropFlag

• - (void)update

This method maintains consistency between the values of the probedObject's
variables and the values which are displayed in the ProbeDisplay. Ideally,
this method should be called every time the object is modified by the
simulation. In practice, the user schedules an update on the
probeDisplayManager which in turn communicates to all the active
ProbeDisplays in the system.

Simtoolsgui

299

CompleteProbeDisplay

Name
CompleteProbeDisplay — A class that generates a complete ProbeMap for an object.

Description
A class which generates a GUI to a complete ProbeMap of probes applied to a given target object (by
complete we mean that all the probes for the target object's class and its superclasses are included)...

Protocols adopted by CompleteProbeDisplay
SingleProbeDisplay (see page 310)

RETURNABLE (see page 66)

Methods
None

Simtoolsgui

300

CompositeWindowGeometryRecordName

Name
CompositeWindowGeometryRecordName — Protocol for archiving objects with several GUI
components.

Description
Protocol for assigning archiving names to components of an object with several GUI components.

Protocols adopted by
CompositeWindowGeometryRecordName
WindowGeometryRecordName (see page 311)

Methods

Phase: Creating
• - setWindowGeometryRecordNameForComponent: (const char *)componentName
widget: widget

Update the list of components, and compute the derived archiving name.

Macros
• SET_COMPONENT_WINDOW_GEOMETRY_RECORD_NAME(theWidget)

• SET_COMPONENT_WINDOW_GEOMETRY_RECORD_NAME_FOR(obj, theWidget)

Simtoolsgui

301

ControlPanel

Name
ControlPanel — Class to control the top level SwarmProcess

Description
ControlPanel keeps track of the users requests to run, stop, quit, or time step the simulation. It
cooperates with the GUISwarm to control the execution of activities in Swarm.

Protocols adopted by ControlPanel
SwarmObject (see page 211)

RETURNABLE (see page 66)

Methods

Phase: Using
• - setStateSave

Saves the objects that are registered for archiving.

• - setStateNextTime

Stop the running activity, and then set state to `ControlStateNextTime'.

• - setStateQuit

Terminate activities, and set state to `ControlStateQuit'.

• - setStateStepping

Stop the running activity, and then set state to `ControlStateStepping'.

• - setStateStopped

The -setStateStopped message is particularly useful since it will cause
the simulation to stop until the user interactively sets it back in motion
(in other words, this method is useful in generating a software-triggered
pause).

• - setStateRunning

Sets the state to `running'.

• - startInActivity: (id <SwarmActivity>)activityID

• - setState: (id <Symbol>)s

• - (id <Symbol>)getState

Get the current button state of the controlpanel. Is one of
ControlStateRunning, ControlStateStopped, ControlStateStepping,
ControlStateNextTime, or ControlStateQuit.

Simtoolsgui

302

GUIComposite

Name
GUIComposite — Base class for objects that use several GUI components.

Description
Base class for objects that use several GUI components.

Protocols adopted by GUIComposite
CompositeWindowGeometryRecordName (see page 300)

Methods

Phase: Using
• - (void)disableDestroyNotification

• - (void)enableDestroyNotification: notificationTarget notificationMethod:

(SEL)notificationMethod

Simtoolsgui

303

GUISwarm

Name
GUISwarm — A version of the Swarm class which is graphics aware.

Description
GUISwarm is a subclass of Swarm that is used as a toplevel Swarm for simulations running with a
graphical user interface. The GUISwarm creates a ControlPanel automatically for you and defines a -go
method that interprets the state of the ControlPanel to keep things running in response to user input.
Users subclass GUISwarm much like they subclass a normal Swarm, implementing the same kind of
buildObjects, buildActions, and activateIn methods. When you are done building your Observer Swarm,
start it as a toplevel via [myGUISwarm go].

The control panel places a few responsibilities on the GUISwarm subclass author. In particular, a
message to [controlPanel doTkEvents] should be scheduled fairly frequently - only when that method is
executed will the user interface update (and the stop button be checked). Also, it is often useful to use
[controlPanel setStateStopped] to wait for the user to indicate they're ready for execution to proceed.

Protocols adopted by GUISwarm
Swarm (see page 210)

WindowGeometryRecordName (see page 311)

CREATABLE (see page 44)

Methods

Phase: Using
• - go

Start the activity running, and also handle user requests via the control
panel. Returns either Completed (the model ran until requested to
terminate) or ControlStateQuit (the user pressed the quit button).

• - (id <ControlPanel>)getControlPanel

• - (id <ActionCache>)getActionCache

Simtoolsgui

304

MessageProbeWidget

Name
MessageProbeWidget — A widget for editing the arguments of a MessageProbe.

Description
A widget for editing the arguments of a MessageProbe.

Protocols adopted by MessageProbeWidget
CREATABLE (see page 44)

Methods

Phase: Creating
• - setProbe: (id <Probe>)probe

• - setObject: object

• - setParent: (id <Frame>)parent

Phase: Using
• - (void)pack

Simtoolsgui

305

MultiVarProbeDisplay

Name
MultiVarProbeDisplay — A display for displaying a ProbeMap across a number of objects.

Description
This ProbeDisplay extracts all the variable probes from a probe map and creates a variable probe entry
for each object in the list provided by the user.

Protocols adopted by MultiVarProbeDisplay
CommonProbeDisplay (see page 298)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setObjectNameSelector: (SEL)objectNameSelector

Sets the selector to send for labeling the object.

• - setProbeMap: (id <ProbeMap>)probeMap

Sets the probe map (i.e. list of fields) to display.

• - setObjectList: (id <List>)objectList

Sets the list of objects to display.

Simtoolsgui

306

MultiVarProbeWidget

Name
MultiVarProbeWidget — A widget for displaying multiple objects across multiple fields.

Description
A widget for displaying multiple objects across multiple fields.

Protocols adopted by MultiVarProbeWidget
SwarmObject (see page 211)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setProbeMap: (id <ProbeMap>)probeMap

Sets the fields (probes) to show on the widget.

• - setObjectList: (id <List>)objectList

Sets the objects to show on the widget.

• - setObjectNameSelector: (SEL)objectNameSelector

Sets the method to use get the label for each object (vertical).

• - setFieldLabelingFlag: (BOOL)labelingFlag

Determines if the fields (probes) are labeled (horizontal).

• - setParent: (id <Frame>)parent

Phase: Using
• - (void)pack

• - (void)update

Simtoolsgui

307

ProbeDisplay

Name
ProbeDisplay — A class to display ProbeMaps

Description
A class which generates a GUI to a ProbeMap of probes applied to a given target object.

Protocols adopted by ProbeDisplay
SingleProbeDisplay (see page 310)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setProbeMap: (id <ProbeMap>)probeMap

This is an optional create phase method - if no probeMap is specified the
ProbeDisplay will ask the probedObject for a ProbeMap using the getProbeMap
method described below... The default behaviour of this method will be to
return the probeLibrary's copy of the probeMap for the class of the target
object.

Simtoolsgui

308

ProbeDisplayManager

Name
ProbeDisplayManager — The ProbeDisplay manager.

Description
A (singleton) class whose instance is used to manage all the ProbeDisplays created by the user during a
GUI run of the simulation.

Protocols adopted by ProbeDisplayManager
SwarmObject (see page 211)

CREATABLE (see page 44)

Methods

Phase: Using
• - setDropImmediatelyFlag: (BOOL)dropImmediateFlag

• - (void)update

This method will recursively send an update message to all the Probe
Displays managed by the ProbeDisplayManager.

• - dropProbeDisplaysFor: anObject

Remove and drop probe displays associated with a given object.

• - removeProbeDisplay: (id <CommonProbeDisplay>)probeDisplay

Remove a probe display from management by the ProbeDisplayManager.

• - addProbeDisplay: (id <CommonProbeDisplay>)probeDisplay

Add a probe display to be managed by the ProbeDisplayManager.

• - (id <CompleteProbeDisplay>)createArchivedCompleteProbeDisplayFor:
anObject variableName: (const char *)variableName

• - (id <CompleteProbeDisplay>)createCompleteProbeDisplayFor: anObject

• - (id <ProbeDisplay>)createArchivedDefaultProbeDisplayFor: anObject
variableName: (const char *)variableName

• - (id <ProbeDisplay>)createDefaultProbeDisplayFor: anObject

• - (id <ProbeDisplay>)createArchivedProbeDisplayFor: anObject variableName:

(const char *)variableName

• - (id <ProbeDisplay>)createProbeDisplayFor: anObject

• - (BOOL)getDropImmediatelyFlag

Macros

Simtoolsgui

309

• CREATE_ARCHIVED_COMPLETE_PROBE_DISPLAY(anObject)

This macro creates a complete probe display for the given object, to be
saved by the window archiver

• CREATE_ARCHIVED_PROBE_DISPLAY(anObject)

This macro creates the probe display for the given object, to be saved by
the window archiver

• CREATE_COMPLETE_PROBE_DISPLAY(anObject)

This macro creates a complete probe display for the given object

• CREATE_PROBE_DISPLAY(anObject)

This macro creates a probe display for the given object

SimpleProbeDisplay

Name
SimpleProbeDisplay —

Description

Protocols adopted by SimpleProbeDisplay
SingleProbeDisplay (see page 310)

RETURNABLE (see page 66)

Methods

Phase: Creating
• - setProbeMap: (id <ProbeMap>)probeMap

Simtoolsgui

310

SingleProbeDisplay

Name
SingleProbeDisplay — An abstract protocol underlying single-object probe displays.

Description
This protocol is common to CompleteProbeDisplay and ProbeDisplay.

Protocols adopted by SingleProbeDisplay
CommonProbeDisplay (see page 298)

Methods

Phase: Creating
• - setProbedObject: anObject

This method must be called.

Phase: Using
• - getProbedObject

Gets the probed object.

Simtoolsgui

311

WindowGeometryRecordName

Name
WindowGeometryRecordName — Protocol for archiving window geometry.

Description
Classes that allow for window geometry archiving must conform this protocol.

Protocols adopted by WindowGeometryRecordName
None

Methods

Phase: Creating
• - setSaveSizeFlag: (BOOL)saveSizeFlag

• - setWindowGeometryRecordName: (const char *)windowGeometryRecordName

This method is used to give an instance ProbeDisplay a name, which will
used by the Archiver when recording its geometry information.

Macros
• SET_WINDOW_GEOMETRY_RECORD_NAME(theWidget)

This macro uses the instance name of theWidget to set its name in the
window geometry record.

Simtoolsgui

312

General

Name
simtoolsgui — GUI-related features for simulation.

Functions
• void initSimtoolsGUI(void)

Initialize the library and create a ProbeDisplayManager.

Globals
id <Symbol> Control

 Type Symbols for ActionCache
id <Symbol> Probing

 Type Symbols for ActionCache
id <Symbol> Spatial

 Type Symbols for ActionCache
id <Symbol> InvalidActionType

 Error Symbols for ActionCache
id <Symbol> ActionTypeNotImplemented

 Error Symbols for ActionCache
id <ProbeDisplayManager> probeDisplayManager

 Manager that keeps track of active probes to be updated
id <Symbol> ControlStateRunning

 State Symbols for the ControlPanel.
id <Symbol> ControlStateStopped

 State Symbols for the ControlPanel.
id <Symbol> ControlStateStepping

 State Symbols for the ControlPanel.
id <Symbol> ControlStateNextTime

 State Symbols for the ControlPanel.
id <Symbol> ControlStateQuit

 State Symbols for the ControlPanel.

Gui Library
Overview

The GUI library is intended to be a toolkit-independent description Swarm-specific GUI widgets. The
user specifies a specific back-end (such as Tk or Java AWT) at link time.

1. Dependencies
Following are the other header files imported by <gui.h>:

#import <objectbase.h>

2. Compatibility
• 1.0.5 -> 1.1. This library was created with the Swarm 1.1 release, earlier version of Swarm used the

tkobjc functions directly.

Documentation and Implementation Status

Revision History
2004-07-16 gui.h schristley

 (GUI_*): Exclude tk macros for GNUstep.

2003-06-23 gui.h pauljohn

 declare ZoomRaster method - (void)fillCenteredRectangleX0: (int)x0 Y0: (int)y0 X1: (int)x1 Y1: (int)y1 Color:
(Color)color; In case users want to draw rectangles whose position does not change when zooming rasters.

2001-05-13 gui.h mgd

 (Histogram): Name count: argument to setColors:count: and setLabels:count: "count".

2001-04-18 gui.h mgd

 (NodeItem): New method -resetString:. (LinkItem): New method -setDirectedFlag:.

2001-03-29 gui.h mgd

 (Pixmap): Remove drawX:Y:, it's in Drawer. (CanvasItem): Remove initiateMoveX:Y:, it's in CanvasAbstractItem.
(NodeItem): Change argument name of setString to label.

2001-03-20 gui.h mgd

 (Graph, Histogram): Make setTitle and setAxisLabelsX:Y: have object returns because there are analysis methods
in creating phase.

2001-03-13 gui.h mgd

 Add setSymbolSize: to GraphElement.

2001-03-12 gui.h mgd

 Many changes to remove ugly object returns.

2001-03-03 gui.h mgd

 (NodeItem): Move setString, setFont, and setX:Y: into create phase. (In the last case, note there is a moveX:Y:
method.)

2000-09-20 gui.h mgd

(ArchivedGeometryWidget): Declare -updateSize.

2000-06-29 gui.h mgd

 (ArchivedGeometryWidget): Remove return type on updateArchiver:.

2000-05-23 gui.h mgd

 (Pixmap): Adopt drop.

2000-04-20 gui.h mgd

 Note that window geometry record names must not have spaces.

2000-03-28 mgd

 Swarmdocs 2.1.1 frozen.

2000-02-29 mgd

 Swarmdocs 2.1 frozen.

2000-02-18 gui.h mgd

 Remove extra +createBegin and -createEnd throughout. Move +create:setWindowGeometryRecordName: to
ArchivedGeometryWidget. Remove from Raster and ZoomRaster.

1999-10-08 gui.h mgd

(ArchivedGeometryWidget): Add -setSaveSizeFlag:.

1999-09-14 gui.h alex

 (Raster, ZoomRaster): Add factory +create:setWindowGeometryRecordName: method to protocols.

1999-07-20 gui.h mgd

 (Form): Change Boolean: argument type to unsigned * (from BOOL *). (InputWidget): Likewise.

1999-06-05 gui.h mgd

 (Colormap): New method unsetColor:. Thanks to Ken Cline.

1999-05-01 gui.h mgd

 (Histogram): Change setNumBins: to setBinCount:. Change type of setActiveOutlierText:count: arguments to
unsigned.

1999-03-20 gui.h mgd

 (WindowGeometryRecord): Don't tag as CREATABLE. Add @class for CheckButton, Form, CanvasIteim,
NodeItem, and Rectangle.

1999-02-26 gui.h mgd

 Add CREATABLE tags for all non-abstract protocols.

1999-02-23 gui.h mgd

 Merge internal protocols into advertised protocols.

1999-02-08 gui.h mgd

 (_ArchivedGeometryWidget): Add archiver argument to updateArchiver:. Version 1.4.1.

1999-01-06 gui.h mgd

 (_Histogram): Change argument to setNumBins: to unsigned. Add count argument to setColors and setLabels.

1998-11-18 gui.h mgd

 (Widget, WindowGeometryRecord, GraphElement, CanvasAbstractItem): Adopt Create and Drop instead of
SwarmObject. (_ClassDisplayLabel, _CompleteProbeDisplayLabel, _ClassDisplayHideButton,
_MessageProbeEntry, _TextItem, _Circle): Add USING tag. (_ButtonPanel, _CompositeItem): Add CREATING
tag.

1998-11-17 gui.h mgd

 (_WindowGeometryRecord): Adopt Serialization protocol; don't redeclare methods.

1998-11-16 gui.h mgd

 Remove creating phase +in:. Rename in: and out: to lispin: and lispout:.

1998-09-30 gui.h mgd

 (_Histogram): -setNumBins:, -setLabels:, -setColors:, +createBegin:, createEnd: Split out
setNumPoints:Labels:Colors: into different methods.

1998-09-28 gui.h alex

 (ScheduleItem): Fixed incorrect documentation markup of `Description' entry for protocol.

1998-09-28 gui.h mgd

 (_Canvas, _Frame): Move Frame's assertGeometry to Canvas as checkGeometry:.

1998-09-25 gui.h mgd

 (_Canvas): Use addWidget:X:Y:centerFlag: and removeWidget:.

1998-09-24 gui.h mgd

 (_ScheduleItem): Add trigger:X:Y:. (_CompleteProbeDisplayLabel): Remove setProbeDisplayManager: and
rename setProbeDisplay: to setTargetWidget:.

1998-09-23 gui.h mgd

 (_ScheduleItem): Add at:owner:widget:x:y:.

1998-09-22 gui.h mgd

 (Circle): Make argument to setRadius: unsigned. Provide Circle, Line, ScheduleItem, and TextItem class objects.
(_ScheduleItem, ScheduleItem): New protocols. (_TextItem): Add +createBegin: and setCenterFlag:.

1998-09-17 gui.h mgd

 (Pixmap): New method setDecorationsFlag:.

1998-09-03 gui.h mgd

 (Widget): Declare -getParent and -getTopLevel. Revert removal of -getWindowGeometry and -
setWindowGeometry:, but don't document them. (Histogram): Declare setXaxisMin:max:step:precision:.

1998-08-19 gui.h mgd

 (Pixmap): Add setDirectory:.

1998-08-18 gui.h mgd

 (Pixmap): Revert create:widget: and create:file: addition and use setFile: and setWidget: instead.

1998-08-06 gui.h mgd

 (_Pixmap): Add create:widget: and create:file:. Move setRaster: to using phase (still need to make implementation
synchronize). Add save:.

1998-07-22 gui.h mgd

 (Graph): Add setRangesXMin:Max:.

1998-07-21 gui.h mgd

 (Graph): Arguments to setScaleModeX:Y: are now boolean, not integers.

1998-07-15 gui.h mgd

 (_VarProbeEntry): Replace setProbeType: with setVarProbe:. Add getVarProbe.

1998-07-07 gui.h mgd

 (_GraphElement): New method -setWidth:.

1998-07-01 gui.h mgd

 (Widget): Rename setPositionX:Y: to setX:Y:. Add new methods -getX and -getY. (_WindowGeometryRecord):
Remove getWindowGeometry and setWindowGeometry:. Remove -describe:. Add setX:Y:, setWidth:Height:,
getSizeFlag, getPositionFlag, getWidth, getHeight, getX, and getY.

1998-06-17 Makefile.am mgd

 Include from refbook/ instead of src/.

1998-06-17 guimeta.sgml alex

 Removed redundant text from ABSTRACT.

1998-06-17 gui00.sgml alex

 Added objectbase.h to list of dependencies.

1998-06-15 Makefile.am mgd

 (MODULE): New variable. Include Makefile.rules from src. Remove everything else.

1998-06-14 gui.h mgd

 Make separate ifdefs for GUI macros to work with the protocol script. Use #if 0 for awt.

1998-06-12 gui00.sgml, guicont.sgml mgd

 Update IDs to SWARM.module.SGML.type.

1998-06-06 gui.ent mgd

 Use public identifiers.

1998-06-05 Makefile.am mgd

 (swarm_ChangeLog): Add.

1998-06-05 gui.h alex

 Fixed (#if 1) around the tk macros - erroneosly set to (#if 0).

1998-06-03 gui.h mgd

 Update documentation tags. Use #if 0 for macros to avoid multiple definitions in protocol.el.

1998-05-27 gui.ent.in mgd

 Fix typo in revhistory.

1998-05-23 Makefile.am mgd

 New file.

1998-05-23 gui.ent.in mgd

 New file.

1998-05-23 gui.ent mgd

 Removed.

1998-05-22 mgd

 Begin revision log.

1998-05-22 gui.h mgd

(_ArchivedGeometryWidget): Declare -loadWindowGeometryRecord, -registerAndLoad, +createBegin:, -
updateArchiver, -getDestroyedFlag, and -drop.

1998-05-13 gui.h mgd

 InputWidget: new protocol. Make CheckButton and Entry inherit from InputWidget, not _InputWidget.

1998-05-06 gui.h mgd

(_Widget, _WindowGeometryRecord, _ArchivedGeometryWidget, _Frame, _Canvas, _ProbeCanvas,
_GraphElement, _Graph, _Histogram, _Label, _ClassDisplayLabel, _VarProbeLabel,
_CompleteProbeDisplayLabel, _Button, _ClassDisplayHideButton, _SimpleProbeDisplayHideButton,
_SuperButton, _InputWidget, _Entry, _MessageProbeEntry, _VarProbeEntry, _ButtonPanel, _Form, _Colormap,
_Drawer, _Raster, _Pixmap, _CanvasAbstractItem, _CanvasItem, _CompositeItem, _NodeItem, _LinkItem,
_OvalNodeItem, _RectangleNodeItem, _TextItem, _Circle, _Rectangle, _Line): Add phase tags. (_Widget,
_WindowGeometryRecord, _ArchivedGeometryWidget, _Frame, _ProbeCanvas, _Raster, _ZoomRaster, _Pixmap,
_CanvasAbstractItem, _NodeItem, _LinkItem): Reorder definitions for above. Move all //S and //D comments in
internal protocols to external protocols. (_GraphElement): Declare -setOwnerGraph:, -createEnd, and
+createOwnerGraph:. (_Raster): Declare +createBegin and -createEnd. (_Graph, _Histogram, _Label,
_ClassDisplayLabel, _Button, _SimpleProbeDisplayHideButton, _InputWidget, _Form, _Colormap, _ZoomRaster):
Declare -createEnd.

1998-04-23 gui.h mgd

 Add documentation tags to all protocols. Bring in sync with tkobjc changes.

1998-04-17 gui.h mgd

 (Raster): Add ellipseX0:Y0:X1:Y1:Width:Color, lineX0:Y0:X1:Y1:Width:Color:, and
rectangleX0:Y0:X1:Y1:Width:Color:. New protocols ButtonPanel, Form, CheckButton, OvalNodeItem,
RectangleNodeItem, CanvasItem, TextItem, Circle, Rectangle, and Line. Split all protocols into `New' and `Usage'
parts.

1998-04-13 gui.h mgd

 Colormap and Pixmap protocols now are drived from Create protocol. (Thanks to Ken Cline.) Add "@class Raster".
(Thanks to Pietro Terna.) (Pixmap): Add getWidth and getHeight methods to protocol.

1998-04-10 gui.h mgd

 Create class object for Raster. (Drawer): Use it to declare drawX:Y: method spec. (Raster): Declare draw:X:Y:
method spec. (Pixmap): New protocol. Create class object for Pixmap.

1998-02-27 gui.h mgd

 (Entry): Add linkVariableInt: to protocol (used in testIPD). (Graph) Add setRangesYMin:Max:. (GraphElement):
Add setColor:, setDashes:, setSymbol:, and resetData. (Entry): Add linkVariableDouble: and linkVariableBoolean:.

1998-02-24 gui.h alex

(GUI_UPDATE_IDLE_TASKS): Added to call the new parametrized (tkobjc_updateIdleTasks) for the Tk #ifndef
and a stub added for the Java version.

1998-02-20 gui.h mgd

 Change javaobjc to awtobjc throughout. Use initAWTObjc instead of initJavaObjc.

1998-02-18 gui.h mgd

 Add AWT placeholders for GUI_* macros. Change GUI_INIT to take a single argument, the Arguments object.
Switch from #ifdef _TK_ to #ifndef USE_JAVA. (Widget): Add setPositionX:Y:.

1998-01-27 gui.h mgd

 Remove GUI_ prefixes from GUI_Color and GUI_PixelValue. Notes about XPixmap and XDrawer. Remove
GUI_ButtonRight. Add ButtonLeft, ButtonMiddle, and ButtonRight defines. Use #import for tkobjc/common.h and
tkobjc/global.h. Rename class XColormap to Colormap and BLTGraph to Graph. Add @class Entry. Add getParent
for Widget. Add fillRectangeX0:Y0:X1:Y1:Color: to Raster. Add moveX:Y: to CompositeItem.

1998-01-26 gui.h mgd

 Remove some USING tags.

1998-01-25 gui.h mgd

 (Widget): Remove setBorderWidth. Add packToRight. (Frame): Change enableRelief to setRelief:. Add
setBorderWidth to Frame. (Label): Remove anchorEast, anchorWest, colorBlue. (ClassDisplayLabel,
VarProbeLabel, ClassDisplayHideButton): Added. (SuperButton): Add createEnd, setOwner, setUser. Add
ClassDisplayLabel, VarProbeLabel.

1998-01-25 gui.h mgd

 New file.

321

ArchivedGeometryWidget

Name
ArchivedGeometryWidget — Base class for widgets that archive geometry.

Description
Subclasses of this class inherit the ability to archive their window geometry. This class also provides an
interface to destroy notification.

Protocols adopted by ArchivedGeometryWidget
Widget (see page 354)

Methods

Phase: Creating
• - updateSize

• - registerAndLoad

• - loadWindowGeometryRecord

• - setSaveSizeFlag: (BOOL)saveSizeFlag

Determines whether or not size is saved in addition to position.

• - setWindowGeometryRecordName: (const char *)recordName

Called to set a name for archiving. recordName must not have spaces.

• + create: (id <Zone>)aZone setWindowGeometryRecordName: (const char *)name

Phase: Using
• - (void)updateArchiver: (id <Archiver>)archiver

Gui

322

Button

Name
Button — A button widget.

Description
A button widget that, when pressed, sends a method to a target object.

Protocols adopted by Button
Widget (see page 354)

CREATABLE (see page 44)

Methods

Phase: Using
• - (void)setButtonTarget: target method: (SEL)method

Set the target and selector for button.

• - setText: (const char *)text

Set the text for button.

Gui

323

ButtonPanel

Name
ButtonPanel — Several buttons bound together in one frame.

Description
Several buttons bound together in one frame.

Protocols adopted by ButtonPanel
Frame (see page 333)

CREATABLE (see page 44)

Methods

Phase: Using
• - (void)addButtonName: (const char *)name method: (SEL)sel

Create a new button, and set the method, using the default target.

• - (void)addButtonName: (const char *)name target: target method: (SEL)sel

Create a new button, and set both a target and method.

• - (void)setButtonTarget: target

Set a default target for use with addButtonName:method:.

Gui

324

Canvas

Name
Canvas — An interface to Tk canvas semantics.

Description
The Canvas widget allows display of a diverse range of graphical objects.

Protocols adopted by Canvas
ArchivedGeometryWidget (see page 321)

CREATABLE (see page 44)

Methods

Phase: Using
• - checkGeometry: frame

Make sure the that the geometry is `reasonable'.

• - removeWidget: widget

Remove a widget from the canvas.

• - addWidget: widget X: (int)x Y: (int)y centerFlag: (BOOL)centerFlag

Position a widget inside the canvas

Gui

325

CanvasAbstractItem

Name
CanvasAbstractItem — An abstract class for items on a Canvas.

Description
CanvasAbstractItem is the root class of all items drawn on a Canvas.

Protocols adopted by CanvasAbstractItem
Create (see page 46)

Drop (see page 54)

Methods

Phase: Creating
• - setCanvas: (id <Canvas>)canvas

Designates the id of the Canvas in which this item resides.

• - (void)createBindings

Method to be implemented by subclass.

• - (void)createItem

Method to be implemented by subclass.

Phase: Using
• - (id <Canvas>)getCanvas

Return the canvas.

• - (void)initiateMoveX: (long)deltaX Y: (long)deltaY

Method to be implemented by subclass.

• - (void)clicked

Called when a mouse click occurs.

• - (void)setPostMoveSel: (SEL)sel

Sets the message that will dictate what happens after the item is moved.

• - (void)setMoveSel: (SEL)sel

Sets the message that will effect the motion of the item on the canvas.

• - (void)setClickSel: (SEL)sel

Sets the message that will be sent upon a click on this item.

• - (void)setTargetId: target

Gui

326

Designates the object to which this item refers.

CanvasItem

Name
CanvasItem — An abstract superclass for simple Canvas items.

Description
An abstract superclass for non-composite Canvas items.

Protocols adopted by CanvasItem
CanvasAbstractItem (see page 325)

CREATABLE (see page 44)

Methods
None

CheckButton

Name
CheckButton — A check box on/off selection widget.

Description
A check box on/off selection widget.

Protocols adopted by CheckButton
InputWidget (see page 338)

CREATABLE (see page 44)

Methods

Phase: Using
• - setBoolValue: (BOOL)v

Turn the widget value and check button on or off.

• - (BOOL)getBoolValue

Get on/off status.

Gui

327

Circle

Name
Circle — A CanvasItem that displays a circle.

Description
A CanvasItem that displays a circle.

Protocols adopted by Circle
CanvasItem (see page 326)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setRadius: (unsigned)r

Set the radius of the circle.

• - setX: (int)x Y: (int)y

Set the x, y coordinates for the center of the circle.

Gui

328

ClassDisplayHideButton

Name
ClassDisplayHideButton — The hide button used by a CompleteProbeDisplay.

Description
A button that handles the dismissal of class widgets on a ClassDisplayWidget (for
CompleteProbeDisplay).

Protocols adopted by ClassDisplayHideButton
Button (see page 322)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setOwner: owner

• - setUser: user

• - setSubWidget: subWidget

ClassDisplayLabel

Name
ClassDisplayLabel — A label for displaying class names.

Description
This widget is used internally by ClassDisplayWidget.

Protocols adopted by ClassDisplayLabel
Label (see page 339)

CREATABLE (see page 44)

Methods
None

Gui

329

Colormap

Name
Colormap — An class for creating a color palette for use with a Raster.

Description
Mechanism used to map numbers in the range [0, 255] to colour names. Create an XColormap, allocate
colours in it, and pass it to a Raster widget for drawing.

Protocols adopted by Colormap
Create (see page 46)

CREATABLE (see page 44)

Methods

Phase: Using
• - (void)unsetColor: (Color)c

Remove color at index `c' from the color map.

• - (BOOL)setColor: (Color)c ToGrey: (double)g

Add a color of a certain level of grey.

• - (BOOL)setColor: (Color)c ToName: (const char *)colorName

Add color index `c' looking up the color name in the color database.

• - (BOOL)setColor: (Color)c ToRed: (double)r Green: (double)g Blue:

(double)b

Add color index `c' to the color map, using a certain percent of red,
green, and blue.

• - (PixelValue)white

The pixel value for white.

• - (PixelValue)black

The pixel value for black.

• - (PixelValue *)map

The current palette, per color-index.

Gui

330

CompleteProbeDisplayLabel

Name
CompleteProbeDisplayLabel — A class label used in a SimpleProbeDisplay.

Description
This widget is used internally by SimpleProbeDisplay. It is used to set up the mouse bindings to get a
CompleteProbeDisplay, and to set up drag and drop.

Protocols adopted by CompleteProbeDisplayLabel
Label (see page 339)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setProbedObject: probedObject

Sets the object that the probe display represents.

• - setTargetWidget: targetWidget

Sets target widget which to report (e.g. probeDisplay).

CompositeItem

Name
CompositeItem — A CanvasItem with several pieces.

Description
A CompositeItem is a CanvasItem that consists of several pieces. CompositeItem is an abstract
superclass.

Protocols adopted by CompositeItem
CanvasAbstractItem (see page 325)

Methods

Phase: Using
• - (void)moveX: (long)deltaX Y: (long)deltaY

Must be implemented by subclass.

Gui

331

Drawer

Name
Drawer — The interface used by Raster to draw an arbitrary object.

Description
The interface used by Raster to draw an arbitrary object. Pixmap uses this.

Protocols adopted by Drawer
None

Methods

Phase: Using
• - (void)drawX: (int)x Y: (int)y

Entry

Name
Entry — Handles text-field input.

Description
Handles text-field input.

Protocols adopted by Entry
InputWidget (see page 338)

CREATABLE (see page 44)

Methods

Phase: Using
• - setHeight: (unsigned)h

This method aborts

Gui

332

Form

Name
Form — A set of Entry widgets bound together in one frame.

Description
A set of Entry widgets bound together in one frame.

Protocols adopted by Form
Widget (see page 354)

CREATABLE (see page 44)

Methods

Phase: Using
• - (void)addLineName: (const char *)n Double: (double *)p

Add an Entry to get a double.

• - (void)addLineName: (const char *)n Int: (int *)p

Add an Entry to get an integer.

• - (void)addLineName: (const char *)n Boolean: (unsigned *)p

Add a boolean CheckButton widget.

• - (void)setEntryWidth: (unsigned)ew

The width of all the Entry widgets.

Gui

333

Frame

Name
Frame — Encapsulation of toplevels.

Description
Frames are boxes other widgets fit in. They correspond to the Tk "frame" and "toplevel" widgets.
Frames can be new windows, or subwindows in an existing window. You only need to create frames
yourself if building complicated composite widgets: by default, a frame will be built automatically for
widgets without parents.

Protocols adopted by Frame
ArchivedGeometryWidget (see page 321)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setReliefFlag: (BOOL)reliefFlag

Determines whether or not a frame has a border.

• - setBorderWidth: (int)width

Determines the width of the border, if any.

Phase: Using
• - (void)deiconify

Deiconify the frame.

• - (void)withdraw

Take the frame off screen.

Gui

334

Graph

Name
Graph — A time series graph tool.

Description
A time series graph tool, based on BLT's graph widget. Graph currently implements just a basic graph
with multiple datasets, but should eventually support scaling and scrolling. For each Graph you create
one or many GraphElements, one per dataset to plot. GraphElements can be configured for appearance,
and data can be added to the element to draw.

Protocols adopted by Graph
ArchivedGeometryWidget (see page 321)

CREATABLE (see page 44)

Methods

Phase: Using
• - (void)setRangesXMin: (double)minx Max: (double)maxx YMin: (double)miny
Max: (double)maxy

Sets the ranges for the graph. Turns off autoscaling.

• - (void)setRangesYMin: (double)miny Max: (double)maxy

Sets the Y ranges for the graph. Turns off autoscaling.

• - (void)setRangesXMin: (double)minx Max: (double)maxx

Sets the X ranges for the graph. Turns off autoscaling.

• - (void)setScaleModeX: (BOOL)xs Y: (BOOL)ys

Whether to autoscale every timestep or instead to jump scale.

• - (id <GraphElement>)createElement

Builds a new GraphElement to plot data with.

• - setAxisLabelsX: (const char *)xl Y: (const char *)yl

Set the axis labels for the graph.

• - setTitle: (const char *)title

Set the title for the graph.

Gui

335

GraphElement

Name
GraphElement — Contains a set of related data for display.

Description
A GraphElement accumulates a related set of data for display, including attributes for the set.

Protocols adopted by GraphElement
Create (see page 46)

Drop (see page 54)

CREATABLE (see page 44)

Methods

Phase: Creating
• + createOwnerGraph: ownerGraph

• - setOwnerGraph: ownerGraph

Phase: Using
• - setWidth: (unsigned)w

Set the line width of the element.

• - (void)resetData

Clear the data to be displayed.

• - (void)addX: (double)x Y: (double)y

Add a new data point.

• - (void)setSymbolSize: (unsigned)size

Set the symbol size in pixels.

• - (void)setSymbol: (const char *)symbol

Set the symbol for the element.

• - (void)setDashes: (int)dashesVal

Set the dash style, 0 means solid.

• - (void)setColor: (const char *)colorName

Set the color for the element.

• - (void)setLabel: (const char *)label

Set the label for the element.

Gui

336

Histogram

Name
Histogram — Histogram display tool.

Description
In Tk, this is based on BLT's barchart. The number of bins is fixed at creation time, then the user hands
the Histogram an array of datapoints (double or int) to display (or optionally an array of datapoints and
locations where the bars should be drawn (specified as doubles).

Protocols adopted by Histogram
ArchivedGeometryWidget (see page 321)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setBinCount: (unsigned)n

Set the number of bins to use (bars to draw).

Phase: Using
• - (void)setupActiveItemInfo

• - (void)setupActiveOutlierMarker

• - (void)setupZoomStack

• - (void)drawHistogramWithDouble: (double *)points

Draw the (double) data in the histogram.

• - (void)drawHistogramWithDouble: (double *)points atLocations: (double

*)locations

Draw the (double) data in the histogram at particular offsets.

• - (void)drawHistogramWithInt: (int *)points

Draw the (integer) data in the histogram.

• - (void)drawHistogramWithInt: (int *)points atLocations: (double

*)locations

Draw the (integer) data in the histogram at particular offsets.

• - (void)hideLegend

Hide the legend on the histogram.

• - (void)setActiveOutlierText: (unsigned)outliers count: (unsigned)count

Set the text that describes a specified number of outliers.

Gui

337

• - setAxisLabelsX: (const char *)xl Y: (const char *)yl

Set the axis labels.

• - (void)setXaxisMin: (double)min max: (double)max step: (double)step

Set the X range and step size for the histogram. Display three
significant figures for the major-tick labels.

• - (void)setXaxisMin: (double)min max: (double)max step: (double)step
precision: (unsigned)precision

Set the X range, step size, and number of major-tick-label significant
figures for the histogram.

• - (void)setBarWidth: (double)step

Set the width of the bars.

• - setTitle: (const char *)title

Set the title of the histogram.

• - (void)setLabels: (const char * const *)l count: (unsigned)count

Set labels for the histogram bars. If not set, they remain blank. Labels
are arrays of strings, one per bin/bar.

• - (void)setColors: (const char * const *)c count: (unsigned)count

Set colors for the histogram bars. If not set, all are blue. Colors are
arrays of strings (one per bin/bar) of color names.

Gui

338

InputWidget

Name
InputWidget — Abstract superclass for widgets that take input.

Description
InputWidgets get their input in one of two ways: by being readable, or by being linked to a C variable.

Protocols adopted by InputWidget
Widget (see page 354)

Methods

Phase: Using
• - (void)linkVariableBoolean: (unsigned *)p

Attach the widget value to a boolean.

• - (void)linkVariableDouble: (double *)p

Attach the widget value to a double.

• - (void)linkVariableInt: (int *)p

Attach the widget value to an integer.

• - (void)setValue: (const char *)v

Set the string value of the widget. This must be implemented by a
subclass.

• - (const char *)getValue

Get the string value of the widget.

Gui

339

Label

Name
Label — A widget with text.

Description
A widget with text.

Protocols adopted by Label
Widget (see page 354)

CREATABLE (see page 44)

Methods

Phase: Using
• - setText: (const char *)text

Set the text to write in the label.

Line

Name
Line — A CanvasItem that displays a line.

Description
A CanvasItem that displays a line.

Protocols adopted by Line
CanvasItem (see page 326)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setTX: (int)tx TY: (int)ty LX: (int)lx LY: (int)ly

Set the end points of the line.

Gui

340

LinkItem

Name
LinkItem — A canvas item for displaying a link between two nodes.

Description
A CompositeCanvasItem for displaying a link between two NodeItems.

Protocols adopted by LinkItem
CompositeItem (see page 330)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setDirectedFlag: (BOOL)directedFlag

For disabling directed link items.

• - setTo: (id <NodeItem>)to

Designate the node that will be the destination of the link.

• - setFrom: (id <NodeItem>)from

Designate the node that will be the source of the link.

Phase: Using
• - (void)update

Redraw the link (especially due to the motion of nodes).

• - (void)setColor: (const char *)aColor

Set the color of the link.

Gui

341

MessageProbeEntry

Name
MessageProbeEntry — A widget for arguments to a message probe.

Description
An Entry widget for MessageProbe arguments.

Protocols adopted by MessageProbeEntry
Entry (see page 331)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setArg: (int)arg

Indicates the argument number.

• - setIdFlag: (BOOL)idFlag

Indicates whether the type of this entry is an id.

Gui

342

NodeItem

Name
NodeItem — A class for displaying a node on a Canvas.

Description
A class for displaying a node on a Canvas. A NodeItem has a position, a font, color, border color and
width.

Protocols adopted by NodeItem
CompositeItem (see page 330)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setX: (int)x Y: (int)y

Set the position of the node.

• - setFont: (const char *)font

Set the font with which to draw the label.

• - setString: (const char *)label

Set the label to put on the node.

Phase: Using
• - (void)createPaddedText

Create the space for the text for the node.

• - (void)createText

Create the text for the node.

• - (void)setBorderWidth: (int)aVal

Set the width of the border.

• - (void)setBorderColor: (const char *)aColor

Set the border color of the node.

• - (void)setColor: (const char *)aColor

Set the color of the node.

• - (int)getY

Get the y position of the node on the canvas.

• - (int)getX

Gui

343

Get the x position of the node on the canvas.

• - (void)resetString: (const char *)string

Change the label on the string after the node is created.

OvalNodeItem

Name
OvalNodeItem — A circular NodeItem.

Description
A NodeItem with a circular appearance.

Protocols adopted by OvalNodeItem
NodeItem (see page 342)

CREATABLE (see page 44)

Methods
None

Gui

344

Pixmap

Name
Pixmap — A class for drawing color bitmaps on a Raster.

Description
A class for drawing color bitmaps on a Raster. The bitmaps are stored in the Portable Network Graphics
format.

Protocols adopted by Pixmap
Drawer (see page 331)

Create (see page 46)

Drop (see page 54)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setDecorationsFlag: (BOOL)decorationsFlag

Specify whether or not window manager decorations for a widget should be
included.

• - setWidget: (id <Widget>)widget

Create a pixmap from a widget, or from the root window if widget is nil.

• - setDirectory: (const char *)path

Specify the directory to find the PNG file.

• - setFile: (const char *)filename

Create a pixmap from a PNG file.

Phase: Using
• - (void)save: (const char *)filename

Save the pixmap to a file.

• - (unsigned)getHeight

Get the height of the bitmap in pixels.

• - (unsigned)getWidth

Get the width of the bitmap in pixels.

• - (void)setRaster: (id <Raster>)raster

Gui

345

Set the raster that the pixmap will be shown on. It's used to augment
raster the color palette as necessary.

ProbeCanvas

Name
ProbeCanvas — A canvas type for probe displays.

Description
ProbeCanvas is a Canvas that implements the general appearance and interface of a probe display.

Protocols adopted by ProbeCanvas
Canvas (see page 324)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setHorizontalScrollbarFlag: (BOOL)horizontalScrolbarFlag

Indicates the presence or absence of a horizontal scroll bar.

Gui

346

Raster

Name
Raster — A two dimension color display class.

Description
2 dimensional, colour pixel images. Raster is based on a Tk frame widget with our own code for fast
display of images. You can draw coloured dots on a Raster, or generic Drawers. Raster widgets are
double buffered - the pixels you draw are not actually put on the screen until drawSelf is called. In
addition, Rasters handle mouse clicks.

Protocols adopted by Raster
ArchivedGeometryWidget (see page 321)

CREATABLE (see page 44)

Methods

Phase: Using
• - (void)erase

Erase the raster.

• - (void)draw: (id <Drawer>)drawer X: (int)x Y: (int)y

Draw an object at a given position.

• - (void)rectangleX0: (int)x0 Y0: (int)y0 X1: (int)x1 Y1: (int)y1 Width:
(unsigned)penWidth Color: (Color)c

Draw a rectangle of given geometry, pen width, and color.

• - (void)lineX0: (int)x0 Y0: (int)y0 X1: (int)x1 Y1: (int)y1 Width:
(unsigned)penWidth Color: (Color)c

Draw a line of given geometry, pen width, and color.

• - (void)ellipseX0: (int)x0 Y0: (int)y0 X1: (int)x1 Y1: (int)y1 Width:
(unsigned)penWidth Color: (Color)c

Draw an ellipse of given geometry, pen width, and color.

• - (void)fillRectangleX0: (int)x0 Y0: (int)y0 X1: (int)x1 Y1: (int)y1 Color:

(Color)color

Fill a rectangle of given geometry and color.

• - (void)setButton: (int)n Client: c Message: (SEL)sel

Configure at mouse button to send a message to a given client object.

• - (void)drawSelf

Draw the raster to the display.

Gui

347

• - (void)drawPointX: (int)x Y: (int)y Color: (Color)c

Draw a point at the given coordinates with the given color.

• - setColormap: (id <Colormap>)c

Set the palette for this raster.

Rectangle

Name
Rectangle — A CanvasItem that displays a rectangle.

Description
A CanvasItem that displays a rectangle.

Protocols adopted by Rectangle
CanvasItem (see page 326)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setTX: (int)tx TY: (int)ty LX: (int)lx LY: (int)ly

Set the diagonal corner coordinates of the rectangle.

Gui

348

RectangleNodeItem

Name
RectangleNodeItem — A rectangular NodeItem.

Description
A rectangular NodeItem.

Protocols adopted by RectangleNodeItem
NodeItem (see page 342)

CREATABLE (see page 44)

Methods
None

Gui

349

ScheduleItem

Name
ScheduleItem — A canvas item for displaying the time structure of a schedule.

Description
A CompositeCanvasItem for displaying the time structure of a schedule.

Protocols adopted by ScheduleItem
CompositeItem (see page 330)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setX: (int)x Y: (int)y

Position the item on the canvas.

• - setStep: (unsigned)step

Set the horizontal spacing of a time step.

• - setSchedule: schedule

Set the schedule to be inspected.

Phase: Using
• - (void)trigger: widget X: (int)x Y: (int)y

Send visual message indicator from browser to some target.

• - (void)at: (timeval_t)tval owner: owner widget: widget x: (int)sourceX y:

(int)sourceY

Record the screen coordinates associated with a scheduling event.

• - (void)update

Redraw widget with current values from Schedule.

Gui

350

SimpleProbeDisplayHideButton

Name
SimpleProbeDisplayHideButton — The hide button used by a SimpleProbeDisplay.

Description
A button that handles the dismissal of a SimpleProbeDisplay.

Protocols adopted by SimpleProbeDisplayHideButton
Button (see page 322)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setProbeDisplay: probeDisplay

The probe display in use.

SuperButton

Name
SuperButton — Request superclass in ClassDisplayWidget.

Description
A button used by ClassDisplayWidget to ask for superclass.

Protocols adopted by SuperButton
Button (see page 322)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setUser: user

• - setOwner: (id <Widget>)owner

• - setSuperWidget: (id <Widget>)superWidget

Gui

351

TextItem

Name
TextItem — A CanvasItem that displays text.

Description
A CanvasItem that displays text.

Protocols adopted by TextItem
CanvasItem (see page 326)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setCenterFlag: (BOOL)centerFlag

Determine whether text is centered or not.

• - setFont: (const char *)font

Set the font with which to display the text.

• - setText: (const char *)text

Set the text to display.

• - setX: (int)x Y: (int)y

Set the coordinate for the center of the text.

Gui

352

VarProbeEntry

Name
VarProbeEntry — A widget for variable probes.

Description
An Entry widget for VarProbes.

Protocols adopted by VarProbeEntry
Entry (see page 331)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setVarProbe: varProbe

Set the variable probe associated with this widget.

• - setOwner: owner

Indicate the object that is using this widget.

• - setInteractiveFlag: (BOOL)interactiveFlag

Indicates whether the entry is editable or not.

Phase: Using
• - getVarProbe

Gui

353

VarProbeLabel

Name
VarProbeLabel — A label for displaying variable names.

Description
This widget is used internally by VarProbeWidget.

Protocols adopted by VarProbeLabel
Label (see page 339)

CREATABLE (see page 44)

Methods
None

Gui

354

Widget

Name
Widget — Widget base class.

Description
All graphical widgets inherit from the Widget base class. Widget defines most of the behaviour needed:
Widgets are created by the user with a particular parent, and then "pack"ed in order to draw them on the
screen. All widgets have three essential things: a widget name used when running Tcl code, an Objective
C name when sending messages from Tcl to those objects, and a parent.

Protocols adopted by Widget
Create (see page 46)

Drop (see page 54)

Methods

Phase: Creating
• - setWidgetNameFromParentName: (const char *)parentWidgetName

Set the widget name using a hypothetical parent name.

• - setWidgetNameFromParent: (id <Widget>)parent

Set the widget name using the parent as context.

• - (const char *)makeWidgetNameFor: widget

Compute the widget name for a component widget.

• - setParent: parent

Set the containing window of the widget.

• + createParent: parent

When a widget is created it needs to be given a parent. The parent widget
will be the widget's containing window. If no parent is given (ie, a parent
of nil), then a toplevel Frame will be allocated automatically

Phase: Using
• - (BOOL)getDestroyedFlag

• - (void)disableDestroyNotification

Prevent calling the destroy notification method.

• - (void)enableDestroyNotification: notificationTarget notificationMethod:

(SEL)destroyNotificationMethod

Call a method if we are destroyed.

Gui

355

• - (void)setWindowGeometry: (const char *)s

• - (const char *)getWindowGeometry

• - (int)getY

Get the Y position of the widget.

• - (int)getX

Get the X position of the widget.

• - (unsigned)getWidth

Get the widget the widget.

• - (unsigned)getHeight

Get the height of the widget.

• - (const char *)getWidgetName

Get the widget name.

• - getTopLevel

Get top level frame

• - getParent

Get the containing window of the widget.

• - (void)setWindowTitle: (const char *)title

Set the title on the widget.

• - setX: (int)x Y: (int)y

Set the position of the widget.

• - setWidth: (unsigned)width Height: (unsigned)height

Set the width and height of the widget.

• - setHeight: (unsigned)height

Set the height of the widget.

• - setWidth: (unsigned)width

Set the width of the widget.

• - (void)setActiveFlag: (BOOL)activeFlag

Enable or disable the widget.

• - (void)packForgetAndExpand

• - (void)packToRight: widget

• - (void)packFillLeft: (BOOL)expandFlag

• - (void)packBeforeAndFillLeft: widget expand: (BOOL)expandFlag

• - (void)packFill

• - (void)pack

Roughly, packing a widget makes it draw on the screen. The Tk packer
allows complicated options to control widget layout. See documentation on
Tk to learn more about packing details.

Gui

356

WindowGeometryRecord

Name
WindowGeometryRecord — A container for window geometry information.

Description
A container for window geometry information that implements archiving methods.

Protocols adopted by WindowGeometryRecord
Serialization (see page 67)

Create (see page 46)

Drop (see page 54)

Methods

Phase: Using
• - (int)getY

Get the window's vertical position.

• - (int)getX

Get the window's horizontal position.

• - (unsigned)getHeight

Get the window's vertical size.

• - (unsigned)getWidth

Get the window's horizontal size.

• - (BOOL)getPositionFlag

Get the flag that indicates if the position has been set.

• - (BOOL)getSizeFlag

Get the flag that indicates if the size has been set.

• - setWidth: (unsigned)w Height: (unsigned)h

Set the window size.

• - setX: (int)x Y: (int)y

Set the window position.

Gui

357

ZoomRaster

Name
ZoomRaster — A zoomable Raster.

Description
ZoomRaster is a subclass of Raster that implements a zoomable image. It handles translation between
logical coordinates and screen coordinates.

Protocols adopted by ZoomRaster
Raster (see page 346)

CREATABLE (see page 44)

Methods

Phase: Using
• - (void)handleConfigureWidth: (unsigned)newWidth Height:

(unsigned)newHeight

Reconfigures the ZoomRaster when the window is resized.

• - setZoomFactor: (unsigned)z

Set the zoom factor.

• - (void)fillCenteredRectangleX0: (int)x0 Y0: (int)y0 X1: (int)x1 Y1:
(int)y1 Color: (Color)color

Special method for ZoomRasters. Like fillRectangleX0:Y0:X1:Y1:Color: in
Raster, it will fill a rectangle of given geometry and color. This method
makes sure that zooming the window does not change the logical position of
the rectangle in relation to the logical coordinates. In other words, if a
rectangle includes point (10,10) at one zoom factors, then that same point
is included for all zoom factors.

• - (unsigned)getZoomFactor

Get the current zoom factor.

• - (void)decreaseZoom

Make the raster smaller.

• - (void)increaseZoom

Make the raster bigger.

Gui

358

General

Name
gui — GUI interface for Swarm

Description
Tcl/Tk is a scripting language and graphical widget set. TkObjc is a library of wrapper classes around
Tk and BLT widgets. It's purpose is to provide a simple graphical interface while hiding most Tk-
specific code from library users. To create and use graphical widgets, the user merely needs to create
and use objects. Many of the objects here are straightforward wrappings of Tk widgets, but some
(ButtonPanel, for instance) are combinations of other widgets, and others (Raster) are novel code.

TkObjc works with most configurations of Tcl, Tk and BLT. It depends on the tclobjc package, the
current version is 1.3 (available from Swarm authors). Very little of this code is library-version
dependent, however, as most of it works by directly calling the Tk interpreter.

The basic purpose of tkobjc is to package Tk functionality. Therefore, tkobjc's behaviour is similar to
the Tk toolkit. For simple usage one should be able to get fairly far just by looking at this document, the
header files, and the Swarm examples: more complicated graphical output will require the programmer
have some familiarity with Tk.

Macros
• ButtonLeft

• ButtonMiddle

• ButtonRight
• GUI_BEEP()

• GUI_DRAG_AND_DROP(source, object)

• GUI_DRAG_AND_DROP_OBJECT()

• GUI_EVENT_ASYNC()

• GUI_EVENT_SYNC()

• GUI_FOCUS(widget)

• GUI_INIT(arguments)

• GUI_MAKE_FRAME(widget)

• GUI_PACK(widget)

• GUI_RELEASE_AND_UPDATE()

• GUI_UPDATE()

• GUI_UPDATE_IDLE_TASKS()

• GUI_UPDATE_IDLE_TASKS_AND_HOLD()

Functions

Gui

359

• void initTkObjc(id arguments)

Typedefs
• Color unsigned char

• PixelValue unsigned long

Analysis Library
Overview

This is the library where tools primarily related to analysis tasks, reside. This includes tools which
simplify the task of graphing values or displaying distributions as well as more specific measurement
tools (such as Average, Entropy).

1. Dependencies
Following are the other header files imported by <analysis.h>:

#import <objectbase.h>
#import <simtoolsgui.h>

2. Compatibility
No explicit compatibility issues for particular versions of Swarm

Documentation and Implementation Status

Revision History
2004-07-30 analysis.h mgd

 (EZAverageSequence, EZSequence): Also exclude in --disable-gui case, as they won't be implemented.

2004-07-21 analysis.h schristley

 #ifndef DISABLE_GUI classes not applicable for a non-gui Swarm build.

2002-05-15 analysis.h mgd

 (ActiveGraph): Move getCurrentValue to using phase. (ActiveOutFile): Add getCurrentValue.

2001-05-13 analysis.h mgd

 (EZBin, EZGraph): For the sake of COM, name the count: argument "count".

2001-01-17 analysis.h mgd

 (EZSequence): Add setUnsignedArg:. (EZAverageSequence): Adopt EZSequence.

2000-04-27 analysis.h mgd

([{Averager,Entropy,EZDistribution,EZGraph} -createEnd]): Remove. ([{EZBin,FunctionGraph] +createBegin:, -
createEnd]): Remove. ([EZDistribution -update, -output]): Protect with #ifndef IDL.

2000-03-28 mgd

 Swarmdocs 2.1.1 frozen.

2000-02-29 mgd

 Swarmdocs 2.1 frozen.

1999-09-07 analysis.h mgd

 Add @class EZAverageSequence;

1999-09-07 analysis.h alex

 (EZAverageSequence): New protocol, make RETURNABLE.

1999-09-07 analysis.h alex

 (EZGraph), EZGraph.[hm]: ([EZGraph -createSequence:withFeedFrom:andSelector:]) returns an object of type
EZSequence. ([EZGraph -create{Average,Min,Max,Count}Sequence:withFeedFrom:andSelector:]): returns an
object of type EZAverageSequence.

1999-08-22 analysis.h mgd

 Add Zone typing to +create:* methods. (EZSequence): Change from CREATABLE to RETURNABLE.

1999-08-09 analysis.h alex

 (EZGraph): Add two convenience methods for batch-mode (non-graphical) instances of EZGraph
(+create:setFileOutput:, +create:setFileName:).

1999-08-02 analysis.h alex

 (EZGraph): Add new convenience factory method to protocol.

1999-07-21 analysis.h vjojic

 Add EZSequence protocol.

1999-04-26 analysis.h alex

 (EZBin, EZGraph): Add compliance to SwarmObject protocol.

1999-02-26 analysis.h mgd

 Add CREATABLE tags to all non-abstract protocols.

1999-01-16 analysis.h alex

 ([EZGraph -setFileName:]): Update method documentation.

1998-12-10 analysis.h mgd

 (EZBin, EZGraph): Declare getFilename and setFilename:. Add getTitle.

1998-09-30 analysis.h mgd

 (EZBin): Add setMonoColorBars:. (EZGraph): Change getGraph return type, and include createEnd.

1998-09-18 analysis.h mgd

 (EZBin): Note that the upper bound is not inclusive.

1998-09-03 analysis.h mgd

 Likewise.

1998-08-24 analysis.h mgd

 (EZGraph): Return value is now a sequence for create{,Average,Count,Min,Max,Total}Sequence:withFeedFrom:
methods. Declare new method -dropSequence:.

1998-07-10 analysis.h alex

 (FunctionGraph): Add phase tags CREATING and USING.

1998-07-08 analysis.h mgd

 (ActiveGraph, ActiveOutFile, FunctionGraph): Add protocols and class objects.

1998-06-17 Makefile.am mgd

 Include from refbook/ instead of src/.

1998-06-17 analysis00.sgml alex

 Added missing description of dependencies - objectbase.h and simtoolsgui.h.

1998-06-15 Makefile.am mgd

 (MODULE): New variable. Include Makefile.rules from src. Remove everything else.

1998-06-12 analysis00.sgml, analysiscont.sgml mgd

 Update IDs to SWARM.module.SGML.type.

1998-06-06 analysis.ent mgd

 Use public identifiers.

1998-06-05 Makefile.am mgd

 (swarm_ChangeLog): Add.

1998-06-03 analysis.h mgd

 Updated documentation tags.

1998-05-23 Makefile.am mgd

 New file.

1998-05-23 analysis.ent.in mgd

 New file:

1998-05-23 analysis.ent mgd

 Removed.

1998-05-22 mgd

 Begin revision log.

1998-05-06 analysis.h mgd

 (Averager, Entropy, EZBin, EZDistribution, EZGraph): (EZBin): Declare +createBegin:. (Entropy,
EZDistribution): Declare -createEnd. (EZBin, EZGraph): -setGraphs and -setFileOutput take a BOOL, not int as an
argument. Reorder for phase tags.

1998-04-23 analysis.h mgd

 Remove includes of analysis things. Replace with protocols for Averager, EZBin, EZDistribution, EZGraph, and
Entropy. Add a @class for each.

365

ActiveGraph

Name
ActiveGraph — Provides a continuous data feed between Swarm and the GUI.

Description
An active graph object is the glue between a MessageProbe (for reading data) and a Graph
GraphElement. ActiveGraphs are created and told where to get data from and send it to, and then are
scheduled to actually do graphic functions. This class is used by EZGraph, and we expect to see less
direct usage of it by end-users as more analysis tools (such as EZGraph) internalize its functionality.

Protocols adopted by ActiveGraph
MessageProbe (see page 202)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setDataFeed: d

Sets the object that will be probed for data.

• - setElement: ge

Sets the graph element used to draw on.

Phase: Using
• - (double)getCurrentValue

Returns the value of the graph element..

• - (void)step

Fires the probe, reads the value from the object, and draws it on the
graph element. The X value is implicitly the current simulation time. Y is
the value read.

Analysis

366

ActiveOutFile

Name
ActiveOutFile — An object that actively updates its file stream when updated.

Description
This is the file I/O equivalent of ActiveGraph: it takes an OutFile object, a target (datafeed) object, and a
selector, which it uses to extract data from the object and send it to the file.

Protocols adopted by ActiveOutFile
MessageProbe (see page 202)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setDataFeed: d

The setDataFeed: method sets the object that will be probed for data.

• - setHDF5Dataset: (id <HDF5>)hdf5Dataset

Sets an extensible HDF5 dataset that data will be appended.

• - setFileObject: aFileObj

The setFileObject: method sets the file object to which the data will be
sent.

Phase: Using
• - (double)getCurrentValue

Returns the last probed value

• - (void)step

The step method fires the probe, reads the value from the object, and
sends the value to the file.

Analysis

367

Averager

Name
Averager — Averages together data, gives the data to whomever asks.

Description
Averager objects read a value (via a MessageProbe) from a collection (typically a list) of objects and
collect statistics over them.

Protocols adopted by Averager
MessageProbe (see page 202)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setWidth: (unsigned)width

Set sampling width for target.

• - setCollection: aTarget

Sets the collection of objects that will be probed.

Phase: Using
• - (unsigned)getCount

The getCount method returns the number of values the averager collects.

• - (double)getMin

The getMin method returns the minimum value the averager collects. The
value is read out of the object, not computed everytime it is asked for.

• - (double)getTotal

The getTotal method sums the values the averager collects. The value is
read out of the object, not computed everytime it is asked for.

• - (double)getMovingStdDev

The returns the square root of -getMovingVariance.

• - (double)getStdDev

The returns the square root of -getVariance.

• - (double)getMovingVariance

The returns the unbiased estimate of sample variance using the specified
sampling width.

• - (double)getVariance

Analysis

368

The returns the unbiased estimate of sample variance per the `corrected'
formula (Hays, Statistics 3rd ed, p. 188).

• - (double)getMovingAverage

The getMovingAverage method averages the values the averager collects
using the specified sampling width.

• - (double)getAverage

The getAverage method averages the values the averager collects. The total
and count are read out of the object to compute the average.

• - (void)update

The update method runs through the collection calling the selector on
each object.

EZAverageSequence

Name
EZAverageSequence — Protocol for an EZAverageSequence

Description
An averaging sequence generated using an EZGraph instance returns an object of this type.

Protocols adopted by EZAverageSequence
EZSequence (see page 377)

RETURNABLE (see page 66)

Methods

Phase: Using
• - (id <Averager>)getAverager

Returns a pointer to the Averager object that provides data to this
sequence. This might be useful if one wants to find additional information
about the data, because the Averager can calculate not only averages, but
also indicators of dispersion, in the ordinary or moving average format.

Analysis

369

EZBin

Name
EZBin — An easy to use histogram interface.

Description
This class allows the user to easily histogram data generated by a collection of objects. In addition the
class will generate some standard statistics over the resulting dataset.

Protocols adopted by EZBin
SwarmObject (see page 211)

GUIComposite (see page 302)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setColors: (const char * const *)colors count: (unsigned)count

Set a custom vector of colors for the histogram bars

• - setUpperBound: (double)theMax

The setUpperBound method sets the non-inclusive upper bound on the
histogram range.

• - setLowerBound: (double)theMin

The setLowerBound method sets the inclusive lower bound on the histogram
range.

• - setBinCount: (unsigned)theBinCount

The setBinCount method sets the number of bins the histogram will have.

• - setMonoColorBars: (BOOL)mcb

The setMonoColorBars method specifies whether all bars should be shown in
a single color (blue). The default is differently colored bars.

• - setAxisLabelsX: (const char *)xl Y: (const char *)yl

The setAxisLabels:X:Y method sets the horizontal and vertical labels on
the histogram in the graphical version of EZBin. (Only relevant if the
state of setGraphics is set to 1.)

• - setFileName: (const char *)fileName

The setFileName method sets the name used for disk file data output. (Only
relevant if the state of seFileOutput is set to 1.) If not set, the
filename defaults to be the same as the graph title.

Analysis

370

• - setTitle: (const char *)title

The setTitle method uses a title string to label a graph window in the
graphical version of EZBin. The label appears at the top of the graph
window. (Only relevant if the state of setGraphics is set to 1.)

• - setFileOutput: (BOOL)state

The setFileOutput method sets the state of file I/O. Set the state to 1
if data for the sequences is to be sent to a file. The default state is 0
meaning that by default no file I/O is carried out by the EZBin class.

• - setProbedSelector: (SEL)aSel

The setProbedSelector method sets the selector that will be applied to the
objects in the specified collection in order to generate the dataset
(inherited from MessageProbe.)

• - setCollection: aCollection

The setCollection method sets the collection of target objects which will
be requested to generate the dataset for the histogram.

• - setGraphics: (BOOL)state

The setGraphics method sets the state of the display. Set the state to 0
if a graphical display of the graph is not required. The default state is
1 meaning that by default the data appears graphically in a window.

Phase: Using
• - (const char *)getFileName

Return the filename string.

• - (const char *)getTitle

Return the title string.

• - (id <Histogram>)getHistogram

Return the histogram widget.

• - (double)getStdDev

The getStd method gets the standard deviation in the dataset. The value
is read out of the object, not computed everytime it is asked for.

• - (double)getAverage

The getAverage method gets the average value in the dataset. The value is
read out of the object, not computed everytime it is asked for.

• - (double)getMax

The getMax method gets the maximum value in the dataset.

• - (double)getMin

The getMin method gets the minimum value in the dataset.

• - (double)getUpperBound

The getUpperBound method gets the upper bound on the histogram range.

• - (double)getLowerBound

Analysis

371

The getLowerBound method gets the lower bound on the histogram range.

• - (unsigned)getBinColorCount

The getBinColorCount method gets the number of distinct bin colors
allocated (by default, or by the user).

• - (unsigned)getBinCount

The getBinCount method gets the number of bins in the histogram.

• - (unsigned)getOutliers

The getOutliers method gets the number of entries which landed out of the
bounds of the histogram. Pressing the "o" key on the graphical
representation of the histogram will display this value both as an integer
and as a percentage of the total number of attempted entries.

• - (unsigned)getCount

The getCount method gets the number of entries which landed within the
bounds of the histogram.

• - (unsigned *)getDistribution

The getDistribution method returns an array of integers containing the
number of entries which landed in each bin of the histogram.

• - (void)output

The output: method combines the actions of -outputGraph and -outputToFile.
If graph updates and file output need to happen at different frequencies,
schedule calls to -outputGraph and -outputToFile instead of -output.

• - (void)outputToFile

The outputToFile method causes the number of entries per bin to be sent to
the output file, using the data extracted by the previous call to update.
If setFileOutput==0, nothing is done.

• - (void)outputGraph

The ouputGraph method causes the graphical display to be updated with the
information extracted by the previous call to update. If setGraphics==0,
nothing is done.

• - (void)update

The update method polls the collection of objects and adds the data to the
final data set. It is possible to poll the same collection of objects
repeatedly, thus increasing the amount of data included in the final
dataset, before generating output.

• - (void)reset

The reset method resets the histogram.

• - (void)setPrecision: (unsigned)precision

Sets the number of significant figures shown for major-tick labels.

Analysis

372

EZDistribution

Name
EZDistribution — An EZBin that treats data as a distribution.

Description
This is a subclass of EZBin which normalizes the data and treats it as a distribution. This means that in
addition to the statistics it can calculate by virtue of being a subclass of EZBin, it can also calculate the
entropy of the distribution as well as return the probabilities associated with the individual bins.

Protocols adopted by EZDistribution
EZBin (see page 369)

CREATABLE (see page 44)

Methods

Phase: Using
• - (double)getEntropy

The getEntropy method returns the entropy of the distribution as
calculated in the previous call to update.

• - (double *)getProbabilities

The getProbabilities method returns an array of doubles representing the
probability of every bin in the distribution.

• - (void)output

The output method causes the graphical display to be updated with the
information extracted by the previous call to update. When file I/O is
enabled (the state of setFileOutput is set to 1), the probability
associated with each bin is sent to the output file. When the graphical
display is enabled (the state of setGraphics is set to 1), the histogram
will be drawn.

• - (void)update

The update method polls the bins and updates the entropy of the
distribution as well as the probabilities associated with the individual
bins.

Analysis

373

EZGraph

Name
EZGraph — A class for easily create graphs.

Description
This class allows the user to easily create graphs of various quantities in the model s/he is investigating.
The user first creates the EZGraph, and then creates "Sequences"; (lines) which will appear in the graph.
The sequences are generated based on data provided by a single object or a collection of target objects,
in reponse to a specified selector. One of the features of the EZGraph is that it will automatically
generate average, total, min, max and count sequences without the user having to mess with Averagers
amd other low-level classes.

Protocols adopted by EZGraph
SwarmObject (see page 211)

GUIComposite (see page 302)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setColors: (const char * const *)colors count: (unsigned)count

Set a custom vector of colors for the graph lines

• - setAxisLabelsX: (const char *)xl Y: (const char *)yl

The setAxisLabels:X:Y method sets the horizontal and vertical labels on
the histogram in the graphical version of EZGraph. (Only relevant if the
state of setGraphics is set to 1.)

• - setTitle: (const char *)aTitle

The setTitle method uses a title string to label a graph window in the
graphical version of EZGraph. The label appears at the top of the graph
window. (Only relevant if the state of setGraphics is set to 1.)

• - setFileName: (const char *)aFileName

The setFileName method sets the name used for disk file data output. (Only
relevant if the state of setFileOutput is set to 1.) The name set here is
prepended to the names of each data sequence. If file name is NOT set, with
this method, the file name for the sequence will default simply to the
sequence name.

• - setHDF5Container: (id <HDF5>)hdf5Container

The setHDF5Container: method allows one to combine multiple graphs with
multiple sequences in a single HDF5 file.

Analysis

374

• - setFileOutput: (BOOL)state

The setFileOutput method sets the state of file I/O. Set the state to 1
if data for the sequences is to be sent to a file. The default state is 0
meaning that by default no file I/O is carried out by the EZGraph class.

• - setGraphics: (BOOL)state

The setGraphics method sets the state of the display. Set the state to 0
if a graphical display of the graph is not required. The default state is 1
meaning that by default the data appears graphically in a window.

• + create: (id <Zone>)aZone setHDF5Container: (id <HDF5>)hdf5Container
setPrefix: (const char *)prefix

Convenience method for creating a non-graphical EZGraph, inside of a HDF5
container.

• + create: (id <Zone>)aZone setFileName: (const char *)filename

Convenience method for creating a non-graphical EZGraph, in this case, the
filename is explicitly set by the user

• + create: (id <Zone>)aZone setFileOutput: (BOOL)fileOutputFlag

Convenience method for creating a non-graphical EZGraph, the filename is
generated from the sequence name

• + create: (id <Zone>)aZone setTitle: (const char *)aTitle setAxisLabelsX:
(const char *)xl Y: (const char *)yl setWindowGeometryRecordName: (const

char *)windowGeometryRecordName

Convenience method for creating `graphical' EZGraph instances

• + create: (id <Zone>)aZone setTitle: (const char *)aTitle setAxisLabelsX:
(const char *)xl Y: (const char *)yl setWindowGeometryRecordName: (const
char *)windowGeometryRecordName setSaveSizeFlag: (BOOL)saveSizeFlag

Phase: Using
• - (void)step

The step method combines -update, -outputGraph and -outputToFile. If you
want file output to occur at a different frequency than graph updates,
schedule those methods separately instead of using -step.

• - (void)outputToFile

the outputToFile method sends to the disk file data obtained from the last
call to -update. If setFileOutput==0, nothing is done.

• - (void)outputGraph

the outputGraph method updates the graph with the data obtained from the
last call to -update. If setGraphics==0, nothing is done.

• - (void)update

the -update method causes the underlying sequences to get the next set of
data values. If a sequence has a single object attached rather than an
Averager, nothing is done.

• - (const char *)getFileName

Analysis

375

Return the file name prefix string.

• - (const char *)getTitle

Return the title string.

• - dropSequence: aSeq

The dropSequence method drops a data sequence (line on the graph), e.g.
because the source object no longer exists. The aSeq parameter should be an
id previously returned by one of the createSequence: methods. If the drop
is successful, the method returns aSeq, otherwise it returns nil.

• - (id <EZAverageSequence>)createCountSequence: (const char *)aName
withFeedFrom: aCollection andSelector: (SEL)aSel

The createCountSequence method takes a collection of objects and
generates a sequence based on the count over the responses of the entire
object set. The method returns an id which can be used later with -
dropSequence.

• - (id <EZAverageSequence>)createMaxSequence: (const char *)aName
withFeedFrom: aCollection andSelector: (SEL)aSel

The createMaxSequence method takes a collection of objects and generates
a sequence based on the maximums over the responses of the entire object
set. The method returns an id which can be used later with -dropSequence.

• - (id <EZAverageSequence>)createMinSequence: (const char *)aName
withFeedFrom: aCollection andSelector: (SEL)aSel

The createMinSequence method takes a collection of objects and generates
a sequence based on the minimum over the responses of the entire object
set. The method returns an id which can be used later with -dropSequence.

• - (id <EZAverageSequence>)createTotalSequence: (const char *)aName
withFeedFrom: aCollection andSelector: (SEL)aSel

The createTotalSequence method takes a collection of objects and
generates a sequence based on the sum over the responses of the entire
object set. The method returns an id which can be used later with -
dropSequence.

• - (id <EZAverageSequence>)createMovingStdDevSequence: (const char *)aName
withFeedFrom: aTarget andSelector: (SEL)aSel andWidth: (unsigned)width

The createMovingStdDevSequence method takes a single object, or collection
of objects and generates a sequence based on the variance over the
responses of the entire object set for a given width chunk of samples. The
method returns an id which can be used later with -dropSequence.

• - (id <EZAverageSequence>)createStdDevSequence: (const char *)aName
withFeedFrom: aCollection andSelector: (SEL)aSel

The createStdDevSequence method takes a collection of objects and
generates a sequence based on the sample variance over the responses of the
entire object set. The method returns an id which can be used later with -
dropSequence.

• - (id <EZAverageSequence>)createMovingVarianceSequence: (const char *)aName
withFeedFrom: aTarget andSelector: (SEL)aSel andWidth: (unsigned)width

Analysis

376

The createMovingVarianceSequence method takes a single object, or
collection of objects and generates a sequence based on the variance over
the responses of the entire object set for a given width chunk of samples.
The method returns an id which can be used later with -dropSequence.

• - (id <EZAverageSequence>)createVarianceSequence: (const char *)aName
withFeedFrom: aCollection andSelector: (SEL)aSel

The createVarianceSequence method takes a collection of objects and
generates a sequence based on the sample variance over the responses of the
entire object set. The method returns an id which can be used later with -
dropSequence.

• - (id <EZAverageSequence>)createMovingAverageSequence: (const char *)aName
withFeedFrom: aTarget andSelector: (SEL)aSel andWidth: (unsigned)width

The createMovingAverageSequence method takes a single object, or
collection of objects and generates a sequence based on the average over
the responses of the entire object set for a given width chunk of samples.
The method returns an id which can be used later with -dropSequence.

• - (id <EZAverageSequence>)createAverageSequence: (const char *)aName
withFeedFrom: aCollection andSelector: (SEL)aSel

The createAverageSequence method takes a collection of objects and
generates a sequence based on the average over the responses of the entire
object set. The method returns an id which can be used later with -
dropSequence.

• - (id <EZSequence>)createSequence: (const char *)aName withFeedFrom: anObj
andSelector: (SEL)aSel

The createSequence method creates a sequence in the EZGraph based on the
return value provided by the object anObj when sent the selector aSel. If
file I/O is enabled, then the data will be sent to a file with the name
aName, otherwise the aName argument is simply used as the legend for the
graph element generated by EZGraph. The method returns an id which can be
used later with -dropSequence.

• - (id <Graph>)getGraph

The getGraph method lets the user access the graph generated internally by
the EZGraph. (Only relevant if the state of setGraphics is set to 1.)

• - (void)setScaleModeX: (BOOL)xs Y: (BOOL)ys

Whether to autoscale every timestep or instead to jump scale.

• - (void)setRangesYMin: (double)ymin Max: (double)ymax

Fix the range of Y values on the graph between some range.

• - (void)setRangesXMin: (double)xmin Max: (double)xmax

Fix the range of X values on the graph between some range.

Analysis

377

EZSequence

Name
EZSequence — Protocol for an EZSequence

Description
A sequence generated using an EZGraph instance returns an object of this type

Protocols adopted by EZSequence
SwarmObject (see page 211)

RETURNABLE (see page 66)

Methods

Phase: Using
• - (double)getCurrentValue

Returns the current value of the sequence.

• - (void)setUnsignedArg: (unsigned)val

After a sequence has been created and a selector is set, this method
allows the user to specify a single unsigned integer argument that is
required by the message that the selector implies.

Example -setUnsignedArg: #1
For example, suppose you have created an EZGraph called "heightGraph"
If one has an object "dog" in which there is a method
- getFriendHeight: (unsigned)h;
And one wants to create a line to plot the 5th dog,
then the EZsequence can be created with a command like:
{

id sequence = [heightGraph createSequence: "aName"
withFeedFrom: dog
andSelector: M(getFriendHeight:);

[sequence setUnsignedArg: 4];
}

Analysis

378

Entropy

Name
Entropy — Computes entropy via a MessageProbe.

Description
Entropy objects read probabilities (via a MessageProbe) from a collection of objects and calculate the
entropy of the underlying distribution.

Protocols adopted by Entropy
MessageProbe (see page 202)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setCollection: aCollection

The setCollection method sets the collection of objects that will be
probed.

Phase: Using
• - (double)getEntropy

The getEntropy method returns the calculated Entropy. The entropy value is
read out of the object, not computed everytime it is requested.

• - (void)update

The update method polls the collection and updates the entropy. This
method should be scheduled prior to collecting the data using getEntropy.

Analysis

379

FunctionGraph

Name
FunctionGraph — A widget for drawing a function over a range of one variable.

Description
The FunctionGraph class is like the ActiveGraph except that instead of plotting values versus time it
plots them versus some specified range on the x-axis. Also, instead of plotting one value on each step (as
you would with time), FunctionGraph does a complete sampling whenever the `graph' method is called.
That is, it graphs f(x) = y for all x in [minX, maxX] where x = minX + n * stepS ize.

The user specifies stuff like minX, maxX, the number of steps between minX and maxX to sample at
and a method selector that is a wrapper for the equation being graphed. The method selector must be in a
particular format: (BOOL) f: (double *) x : (double *) y If the method returns FALSE then that x value
is skipped, otherwise it is assummed that y = f(x) and that value is plotted.

Protocols adopted by FunctionGraph
SwarmObject (see page 211)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setResetFrequency: (unsigned)freq

Set the frequency at which to clear the graph element.

• - setXMin: (double)minx Max: (double)maxx StepSize: (double)size

Set the range and step size of X values at which to compute values.

• - setXMin: (double)minx Max: (double)maxx Resolution: (unsigned)steps

Set the range and resolution of X values at which to compute values.

• - setArithmeticWarn: (BOOL)state

If true, raise a warning if the function method failed to compute a value.

• - setFunctionSelector: (SEL)aSel

Set the function method.

• - setDataFeed: feed

Set the target to send the function method.

• - setElement: (id <GraphElement>)graphElement

Set the GraphElement to use for plotting.

Phase: Using

Analysis

380

• - (void)graph

Draw the graph with the current contents of the graph element.

General

Name
analysis — Analysis tools

Description
This is the library where tools primarily related to analysis tasks, reside. This includes tools which
simplify the task of graphing values or displaying distributions as well as more specific measurement
tools (such as Average, Entropy).

Space Library
Overview

The Swarm Space library is the beginnings of a library to assist in building environments for
interacting agents. In general, environments can be just as varied as the agents themselves (in one view,
the environment itself is simply another agent). However, many simulations have similar types of
environments that can be helpfully supported by generic code.

The current space library only addresses simple kinds of discretized 2d space. Improvement is planned
in the future. Briefly, coordinates need to be elevated to the status of objects, which should hopefully
allow spaces of different scales and boundary conditions to interact through a common reference
system. In addition, other types of spaces are desired: continuous coordinates, other dimensions,
arbitrary graphs, etc

1. Dependencies
Following are the other header files imported by <space.h>:

#import <objectbase.h>
#import <gui.h>

2. Compatibility
No explicit compatibility issues for particular versions of Swarm

Documentation and Implementation Status

Swarm is an open ended system which is meant to grow in response to the requirements of the user base, either by
inhouse development or through user re-contributions. We are therefore maintaining a list of the most popular
requests (both in terms of tools and libraries) so that groups of users can recognize common requirements, make
more informed suggestions and so forth:

A 'Double' Space Which could deal with notions of "distance" and answer questions of the form: "which other
objects are within X radius of me"? An initial implementation of such a space has been re-contributed by Ginger
Booth and may serve as a good foundation for such a space.

Complete Batch-Mode Support Swarm can now run in batch mode, which should allow the user to organize large
parameter sweeps over the models s/he is implementing. However, we still need to provide adequate and
standardized support for file operations (it should be easy, for example, to load the parameters of an experiment
from a file). In order to do this we will provide File objects which will allow users to avoid ad-hoc coding of their
file-I/O. This support will be in place well before V1.0.

More Analysis Tools The averager object can generate the Mean, Max, Min, and Count of a given input stream. We
would like to add similar tools to calculate entropies, mutual information and other such measures.

Revision History
2004-07-21 space.h schristley

 #ifndef DISABLE_GUI class not applicable for a non-gui Swarm build.

2001-08-10 space.h mgd

 (GridData): New protocol. (Discrete2d): Adopt it.

2000-03-28 mgd

 Swarmdocs 2.1.1 frozen.

2000-02-29 mgd

 Swarmdocs 2.1 frozen.

1999-08-24 space.h mgd

 Add Discrete2d and Raster typing on convenience factory methods (for use by Java).

1999-08-22 space.h mgd

 Add Zone typing to +create* methods. Don't touch arguments that are subclasses of Discrete2d because we don't
have a stubbing mechanism for that.

1999-08-03 space.h alex

 (Diffuse2d): Make initializeLattice a CREATING method to match implementation.

1999-08-01 space.h alex

 (Object2dDisplay, Value2Display, Discrete2d, Diffuse2d, DblBuffer2d, Grid2d): Add +create: convenience
methods to these CREATABLE protocols.

1999-07-09 space.h mgd

 (Object2dDisplay): Add -makeProbeAtX:Y:.

1999-05-05 space.h alex

 (Ca2d): Remove CREATABLE tag in protocol definition, since this protocol is intended to be abstract.
(Discrete2d): Add example of Lisp output serialization. (Int2dFiler): Note as deprecated protocol, point user to
Discrete2d serialization.

1999-05-01 space.h mgd

 (Discrete2d): Remove setUseObjects and setUseValues.

1999-04-25 space.h alex

 ([Discrete2d -setUseObjects], [Discrete2d -setUseValues]): Add to SETTING phase.

1999-02-26 space.h mgd

 Merge _Discrete2d with Discrete2d. Add CREATABLE tags for all non-abstract protocols.

1998-10-04 space.h mgd

 (_Discrete2d): Make x and y arguments to setSizeX:Y:, getObjectAtX:Y: getValueAtX:Y:, putObject:atX:Y:,
putValue:atX:Y: unsigned. Make return values of getSize{X,Y} unsigned. (DblBuffer2d): Make x and y arguments
to putObject:atX:Y: and putValue:atX:Y: unsigned. (Grid2d): Likewise. (Ca2d): Make argument to setNumStates:
unsigned.

1998-07-15 space.h mgd

 (_Discrete2d): Split Discrete2d into new and presentation interface.

1998-06-17 Makefile.am mgd

 Include from refbook/ instead of src/.

1998-06-17 space00.sgml alex

 Added missing description of dependencies - objectbase.h and gui.h.

1998-06-15 Makefile.am mgd

 (MODULE): New variable. Include Makefile.rules from src. Remove everything else.

1998-06-12 space00.sgml, spacecont.sgml mgd

 Update IDs to SWARM.module.SGML.type.

1998-06-06 space.ent mgd

 Use public identifiers.

1998-06-05 Makefile.am mgd

 (swarm_ChangeLog): Add.

1998-06-03 space.h mgd

 Add a module summary documentation tag.

1998-05-23 Makefile.am mgd

 New file.

1998-05-23 space.ent.in mgd

 New file.

1998-05-23 space.ent mgd

 Removed.

1998-05-22 mgd

 Begin revision log.

1998-05-06 space.h mgd

 (Discrete2d, Ca2d): Add phase tags, reorder in sync. (DblBuffer2d, Value2dDisplay, ConwayLife2d, Diffuse2d,
Grid2d, Object2dDisplay, Int2dFiler): Add phase tags. (Value2dDisplay): Declare -createEnd. (Grid2d, Int2dFiler):
Declare +createBegin.

1998-04-24 space.h mgd

 Now a protocol definition file instead of a full set of includes.

386

Ca2d

Name
Ca2d — Defines abstract protocol for cellular automata.

Description
Inherits from DblBuffer2d, defines abstract protocol for cellular automata.

Protocols adopted by Ca2d
DblBuffer2d (see page 388)

Methods

Phase: Creating
• - initializeLattice

Use this to set up your CA to a default initial state. Unimplemented in
Ca2d; subclass this to set up initial state of lattice.

• - setNumStates: (unsigned)n

Record the number of states the CA understands.

Phase: Using
• - stepRule

One iteration of the CA rule. Unimplemented in Ca2d; subclass this to
implement your CA rule.

Space Library

387

ConwayLife2d

Name
ConwayLife2d — Classic 2d Conway's Life CA.

Description
Classic 2d Conway's Life CA.

Protocols adopted by ConwayLife2d
Ca2d (see page 386)

CREATABLE (see page 44)

Methods

Phase: Creating
• - initializeLattice

Initialize lattice to random 1/3 in state 1.

Phase: Using
• - stepRule

Run Conway's Life rule (simpleminded version).

Space Library

388

DblBuffer2d

Name
DblBuffer2d — A double buffered space.

Description
DblBuffer2d augments Discrete2d to provide a form of double buffered space. Two lattices are
maintained: lattice (the current state), and newLattice (the future state). All reads take place from lattice,
all writes take place to newLattice. newLattice is copied to lattice when updateLattice is called.
DblBuffer2d can be used to implement one model of concurrent action, like in Ca2ds. NOTE: be very
careful if you're using low-level macro access to the world, in particular be sure that you preserve the
write semantics on the newLattice.

Protocols adopted by DblBuffer2d
Discrete2d (see page 390)

CREATABLE (see page 44)

Methods

Phase: Using
• - putValue: (long)v atX: (unsigned)x Y: (unsigned)y

Overridden so writes happen to newLattice.

• - putObject: anObject atX: (unsigned)x Y: (unsigned)y

• - updateLattice

Copy newLattice to lattice, in effect updating the lattice.

• - (id *)getNewLattice

Return a pointer to the newLattice buffer.

Space Library

389

Diffuse2d

Name
Diffuse2d — 2d difussion with evaporation.

Description
Discrete 2nd order approximation to 2d diffusion with evaporation. Math is done in integers on the
range [0,0x7fff].

Protocols adopted by Diffuse2d
Ca2d (see page 386)

CREATABLE (see page 44)

Methods

Phase: Creating
• - initializeLattice

Initialize world to 0.

• + create: (id <Zone>)aZone setSizeX: (unsigned)x Y: (unsigned)y
setDiffusionConstant: (double)d setEvaporationRate: (double)e

Convenience constructor for Diffuse2d

Phase: Setting
• - setEvaporationRate: (double)e

Set the evaporation rate. Values over 1.0 don't make much sense

• - setDiffusionConstant: (double)d

Set the diffusion constant. Values over 1.0 might not be valid.

Phase: Using
• - stepRule

Run discrete approximation to diffusion. Roughly, it's newHeat = evapRate
* (self + diffuseConstant*(nbdavg - self)) where nbdavg is the weighted
average of the 8 neighbours.

Space Library

390

Discrete2d

Name
Discrete2d — Root class of all 2d discrete spaces.

Description
A Discrete2d is basically a 2d array of ids. Subclasses add particular space semantics onto this.
Currently Discrete2d grids are accessed by integer pairs of X and Y coordinates.

Protocols adopted by Discrete2d
SwarmObject (see page 211)

GridData (see page 394)

CREATABLE (see page 44)

Methods

Phase: Creating
• - makeOffsets

Given an array size, compute the offsets array that caches the
multiplication by ysize. See the discrete2dSiteAt macro.

• - (id *)allocLattice

Allocate memory for the lattice.

• - setSizeX: (unsigned)x Y: (unsigned)y

Set the world size.

• + create: (id <Zone>)aZone setSizeX: (unsigned)x Y: (unsigned)y

Convenience constructor for Discrete2d lattice

Phase: Setting
• - setObjectFlag: (BOOL)objectFlag

When objectFlag is true, indicates that this lattice is intended only for
objects.

• - setLattice: (id *)lattice

Phase: Using
• - copyDiscrete2d: (id <Discrete2d>)a toDiscrete2d: (id <Discrete2d>)b

This method copies the data in one Discrete2d object to another Discrete2d
object. It assumes that both objects already exist.

• - (int)setDiscrete2d: (id <Discrete2d>)a toFile: (const char *)filename

Space Library

391

This method reads a PGM formatted file and pipes the data into a
Discrete2d object.

• - fillWithObject: anObj

Fills the space using putObject.

• - fillWithValue: (long)aValue

Fills the space using putValue.

• - fastFillWithObject: anObj

Directly fills the lattice with an object.

• - fastFillWithValue: (long)aValue

Directly fills the lattice with a value.

• - putValue: (long)v atX: (unsigned)x Y: (unsigned)y

Put the given integer to (x,y) overwriting whatever was there.

• - putObject: anObject atX: (unsigned)x Y: (unsigned)y

Put the given pointer to (x,y) overwriting whatever was there.

Examples
Example #1
Discrete2d instances can now serialize themselves (without needing
additional classes such as Int2dFiler).

The result of value (shallow) Lisp serialization of a 4x3 Discrete2d
consisting of long values might be:

(list
(cons 'myDiscrete2d

(make-instance 'Discrete2d
#:xsize 4 #:ysize 3 #:lattice
(parse
#2((1000 1000 1000 1000)

(1000 1000 1000 1000)
(1000 1000 10 1000))))))

For object (deep) Lisp serialization of the same 4x3 lattice with
identical instances of MyClass at each point (except at (2,2) which
has an instance of MyClassOther) would look like:

(list
(cons 'myDiscrete2d

(make-instance 'Discrete2d
#:xsize 4 #:ysize 3 #:lattice
(parse
(cons '(0 . 0)
(make-instance 'MyClass #:strVal "Hello World"))
(cons '(0 . 1)
(make-instance 'MyClass #:strVal "Hello World"))
(cons '(0 . 2)

Space Library

392

(make-instance 'MyClass #:strVal "Hello World"))
(cons '(1 . 0)
(make-instance 'MyClass #:strVal "Hello World"))
(cons '(1 . 1)
(make-instance 'MyClass #:strVal "Hello World"))
(cons '(1 . 2)
(make-instance 'MyClass #:strVal "Hello World"))
(cons '(2 . 0)
(make-instance 'MyClass #:strVal "Hello World"))
(cons '(2 . 1)
(make-instance 'MyClass #:strVal "Hello World"))
(cons '(2 . 2)
(make-instance 'MyClassOther #:strVal "Other World"))
(cons '(3 . 0)
(make-instance 'MyClass #:strVal "Hello World"))
(cons '(3 . 1)
(make-instance 'MyClass #:strVal "Hello World"))
(cons '(3 . 2)
(make-instance 'MyClass #:strVal "Hello World"))))))

Space Library

393

Grid2d

Name
Grid2d — A 2d container class for agents.

Description
Grid2d is a generic container class to represent agent position on a 2d lattice. It gets most of its
behaviour from Discrete2d, adding extra code to check that you don't overwrite things by accident.
Grid2d is pretty primitive: only one object can be stored at a site, no boundary conditions are implied,
etc.

Protocols adopted by Grid2d
Discrete2d (see page 390)

CREATABLE (see page 44)

Methods

Phase: Using
• - setOverwriteWarnings: (BOOL)b

If set to true, then if you try to store something at a site that doesn't
have 0x0 there, a warning will be generated.

• - putObject: anObject atX: (unsigned)x Y: (unsigned)y

Replaces the Discrete2d method. First check to see if it should do
overwrite warnings, and if so if you're going to overwrite: if both
conditions are true, print out a warning message. Regardless of the check,
it writes the new object in.

Space Library

394

GridData

Name
GridData — Methods used by Value2dDisplay and Object2dDisplay for display

Description
Methods required by widgets that display grids. User defined space objects must adopt this or any
implementor of it in order to be accepted as data providers in the setDiscrete2dToDisplay method of
Value2dDisplay and Object2dDisplay objects. User spaces must also define the macro
discrete2dSiteAt(), versions of which can be found in Grid2d.h or Discrete2d.h.

Protocols adopted by GridData
None

Methods

Phase: Using
• - (long)getValueAtX: (unsigned)x Y: (unsigned)y

Return the integer stored at (x,y).

• - getObjectAtX: (unsigned)x Y: (unsigned)y

Return the pointer stored at (x,y).

• - (long *)getOffsets

• - (id *)getLattice

Returns the lattice pointer - use this for fast access.

• - (unsigned)getSizeY

Get the size of the lattice in the Y dimension.

• - (unsigned)getSizeX

Get the size of the lattice in the X dimension.

Space Library

395

Int2dFiler

Name
Int2dFiler — Saves the state of a Discrete2d object [DEPRECATED].

Description
The Int2dFiler class is used to save the state of any Discrete2d object (or a subclass thereof) to a
specified file.

Use of this protocol is deprecated, the ability to write the state of a Discrete2d instance to disk (serialize)
is now encoded directly to the Discrete2d class, via the lisp and HDF5 archiver features.

Protocols adopted by Int2dFiler
SwarmObject (see page 211)

CREATABLE (see page 44)

Methods

Phase: Using
• - fileTo: (const char *)aFileName

When the Int2dFiler receives this message, it opens a file called
fileName, stores the state of a pre-specified space into it, and then
closes the file.

• - setBackground: (int)aValue

This message is optional. It is used when the target Discrete2d contains
objects. If a particular location in the space has no resident object, the
argument of this message is the value which gets writtent to the file. The
default background value is 0.

• - setValueMessage: (SEL)aSelector

This message is optional. It is used when the target Discrete2d contains
objects. By sending each object the message specified by the selector, the
Int2dFiler is able to get from the object an integer representing its
state, which it then writes to the file.

• - setDiscrete2dToFile: (id <Discrete2d>)sSpace

Set the target space to be filled. This message can be used more than
once, but often it is useful to keep one Int2dFiler per space (e.g. when
the space is saved multiple times).

Space Library

396

Object2dDisplay

Name
Object2dDisplay — Object2dDisplay displays 2d arrays of objects.

Description
Object2dDisplay helps display 2d arrays of objects. Create a Object2dDisplay, give it a Raster widget to
draw on, a Discrete2d, a message to call on each object, and (optionally) a collection of objects and it
will dispatch the message to all objects with the Raster widget as an argument. In addition,
Object2dDisplay can help you make probees.

Protocols adopted by Object2dDisplay
SwarmObject (see page 211)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setDisplayMessage: (SEL)s

Set the message to be sent to each object in the grid to make it draw
itself.

• - setDiscrete2dToDisplay: (id <GridData>)c

Set the 2d array to draw.

• - setDisplayWidget: (id <Raster>)r

Set the display widget to use for drawing.

• + create: (id <Zone>)aZone setDisplayWidget: (id <Raster>)r
setDiscrete2dToDisplay: (id <GridData>)c setDisplayMessage: (SEL)s

Convenience constructor for Object2dDisplay

Phase: Using
• - makeProbeAtX: (unsigned)x Y: (unsigned)y

Make a probe for an object at a specific point.

• - display

Draw all objects in the array (or optionally, the collection) on the
raster widget. All that happens here is the display message is sent to each
object - it is the object's responsibility to render itself.

• - setObjectCollection: objects

Space Library

397

Set a collection of objects to be displayed. If this is not given, then
Object2dDisplay loops through the 2d grid sending draw messages to all
objects it finds there. Giving an explicit collection of objects to draw
is more efficient if your grid is sparsely populated.

Value2dDisplay

Name
Value2dDisplay — Value2dDisplay displays 2d arrays of values.

Description
Value2dDisplay helps display 2d arrays of values. Value2dDisplay goes through a given Discrete2d
array, turn states into colours, and draws them into a Raster widget.

Protocols adopted by Value2dDisplay
SwarmObject (see page 211)

CREATABLE (see page 44)

Methods

Phase: Creating
• - setDiscrete2dToDisplay: (id <GridData>)c

Set which array to draw.

• - setDisplayWidget: (id <Raster>)r colormap: (id <Colormap>)c

Set the display widget and the colourmap to use to draw the value array.

• + create: (id <Zone>)aZone setDisplayWidget: (id <Raster>)r colormap: (id
<Colormap>)c setDiscrete2dToDisplay: (id <GridData>)d

Convenience constructor for Value2dDisplay

Phase: Using
• - display

Draw the array on the given widget. Note that you still have to tell the
widget to draw itself afterwards. The code for display uses the fast macro
access in Discrete2d on the cached return value from getLattice. It also
caches the drawPointX:Y: method lookup on the display widget - this is a
nice trick that you might want to look at.

• - setDisplayMappingM: (int)m C: (int)c

Linear transform of states to colours for drawing. color = state / m + c
If not set, assume m == 1 and c == 0.

Space Library

398

General

Name
space — tools for visualizing objects in various spaces

Description
The Swarm Space library is the beginnings of a library to assist in building environments for interacting
agents. In general, environments can be just as varied as the agents themselves (in one view, the
environment itself is simply another agent). However, many simulations have similar types of
environments that can be helpfully supported by generic code.

The current space library only addresses simple kinds of discretized 2d space. Improvement is planned
in the future: see the todo list for ideas. Briefly, coordinates need to be elevated to the status of objects,
which should hopefully allow spaces of different scales and boundary conditions to interact through a
common reference system. In addition, other types of spaces are desired: continuous coordinates, other
dimensions, arbitrary graphs, etc.

Startup protocol

401

SwarmEnvironment

Name
SwarmEnvironment — Container object for Swarm globals

Description
Container object for Swarm globals

Protocols adopted by SwarmEnvironment
CREATABLE (see page 44)

Methods

Phase: Creating
• + initSwarm: (const char *)appName version: (const char *)version
bugAddress: (const char *)bugAddress argCount: (unsigned)count args: (const

char **)args

• - createEnd

• - setBatchMode: (BOOL)batchMode

• - setArguments: (id <Arguments>)arguments

• + createBegin

Phase: Using
• - (void)updateDisplay

• - (void)verboseMessage: (const char *)message

• - (const char *)typeModule: (const char *)typeName

• - (void)dumpDirectory

• - (void)xfprint: obj

• - (void)xprint: obj

• - (void)setComponentWindowGeometryRecordName: widget name: name

• - (void)setComponentWindowGeometryRecordNameFor: obj widget: widget name:

name

• - (void)setWindowGeometryRecordName: obj name: (const char *)name

• - (void)createArchivedCompleteProbeDisplay: obj name: (const char *)name

• - (void)createArchivedProbeDisplay: obj name: (const char *)name

• - (void)createCompleteProbeDisplay: obj

• - (void)createProbeDisplay: obj

SwarmEnvironment

402

• - (id <SwarmActivity>)getCurrentSwarmActivity

• - (timeval_t)getCurrentTime

• - (void)initSwarmUsing: (const char *)appName version: (const char
*)version bugAddress: (const char *)bugAddress args: (const char **)args

• - (id <Symbol>)getLanguageObjc

• - (id <Symbol>)getLanguageJava

• - (id <Symbol>)getLanguageCOM

• - (BOOL)getGuiFlag

• - (id <Archiver>)getLispAppArchiver

• - (id <Archiver>)getHdf5AppArchiver

• - (id <Archiver>)getLispArchiver

• - (id <Archiver>)getHdf5Archiver

• - (id <ProbeDisplayManager>)getProbeDisplayManager

• - (id <ProbeLibrary>)getProbeLibrary

• - (id <UniformDoubleDist>)getUniformDblRand

• - (id <UniformIntegerDist>)getUniformIntRand

• - (id <MT19937gen>)getRandomGenerator

• - (id <Zone>)getGlobalZone

• - (id <Zone>)getScratchZone

• - (id <Symbol>)getControlStateNextTime

• - (id <Symbol>)getControlStateQuit

• - (id <Symbol>)getControlStateStepping

• - (id <Symbol>)getControlStateStopped

• - (id <Symbol>)getControlStateRunning

• - (id <Symbol>)getSequential

• - (id <Symbol>)getRandomized

• - (id <Symbol>)getCompleted

• - (id <Symbol>)getTerminated

• - (id <Symbol>)getReleased

• - (id <Symbol>)getHolding

• - (id <Symbol>)getStopped

• - (id <Symbol>)getRunning

• - (id <Symbol>)getInitialized

• - (id <Symbol>)getEnd

• - (id <Symbol>)getMember

SwarmEnvironment

403

• - (id <Symbol>)getStart

• - (id <Arguments>)getArguments

General

Name
swarm — Top-level Swarm module

Description
Top-level module for controlling startup and providing access to globals

Functions
• void _initSwarm_(int argc, const char **argv, const char *appName, const

char *version, const char *bugAddress, Class argumentsClass, struct
argp_option *options, int (*optionFunc)

Globals
BOOL swarmGUIMode

 Flag for whether we're in graphics mode or not. Default is NO.

404

Appendix A. GridTurtle Test Programs
Important: To prevent the guide from getting overbulky, the actual program listings of the Grid
Turtle test programs, that were formerly contained here, can now be found in a separate archive on
the Swarm ftp site: gridturtle-2.2.tar.gz (ftp://ftp.swarm.org/pub/swarm/gridturtle-2.2.tar.gz)

A.1. Overview
The GridTurtle test programs are a collection of programs which exercise basic capabilities of the
defobj, collections, and activity libraries. These programs are always run on each new release of these
libraries as a partial test. For the time being they also serve to show examples of working code that
exercise basic capabilities or accomplishes particular tasks.

Note, however, that these are not good examples to learn from, or examples to emulate! The programs
are not particularly well-designed as either a systematic test or a useful series of tutorial examples, but
until there's anything else they help serve for both. To serve their role as test programs some of these
examples deliberately make use of the more obscure and low-level features of the libraries they exercise.
Mixed in are examples of many basic code fragments an application might need. So be selective in what
you use, and read the comments on each program below.

Most of the programs in this directory use a simple type of object called a "GridTurtle." This type of
object is an agent that move around on a two-dimensional grid, always moving in a current direction that
it maintains internally. This agent is like a "turtle" of the original Logo system, except that its position is
constrained to discrete integer values of its X-Y coordinates, and its direction is always one of the four
orthogonal directions north, east, south, or west. The GridTurtle object type is implemented using the
Library Interface Conventions (see page 406) of the Defobj Library (see page 26) library, and is itself a
defined module that must be initialized by any program.

A.2. Summary of files

A.2.1. Main programs
• grid0.m (see page 404). Initialization of library package. (Swarm applications ordinarily just call

initSwarm() which takes care of all needed library initialization.) Basic messages on GridTurtle
object.

• grid1a.m, grid1b.m, grid1c.m (see page 404). Tests of Array type. The setInitialValue:,
setDefaultMember:, and setMemberBlock: options are each tested by variants of the same basic
program.

• grid2.m, grid2b.m (see page 404). Tests of List type. grid2 also tests inheritance from a class that
implements the List type (not yet supported, but does work). grid2b uses an internal member slot (a
special low-level implementation feature) in what is called a List, but should really be an OrderedSet.
The messages being used for this are in the process of being changed, and should not be used.

• grid3.m, grid3b.m (see page 404). Tests of Map type. grid3b uses an alternate compare function to
handle integers rather than id values as keys.

Appendix A. GridTurtle Test Programs

405

• grid4.m, grid4b.m (see page 404). Test of Set and OrderedSet types. The OrderedSet creation in
grid4b uses message names that differ from the currently documented interface.

• grid5.m (see page 404). Tests of ActionGroup execution independent of any schedule, both by itself
and within a swarm.

• grid6.m (see page 404). Test of running an entire top-level activity within an action of an already
running activity.

• grid7.m (see page 404). Tests of schedule execution and schedule merging, using various
combinations of absolute, relative, and repeating schedules.

• grid8.m (see page 404). Basic test of schedules running within a simulation swarm that is nested
within an observer swarm.

• grid9.m (see page 404). Test of two-level nested swarms using a custom subclass for the swarm.
(Normal user subclassing should use the Swarm superclass provided in the objectbase (see page 404)
library.)

• mousetraps, Mousetrap.m (see page 404). Sample application (main program and supporting class)
that uses dynamic scheduling. This application is much the same as the mousetrap model of a nuclear
chain reaction that is also implemented as a stand-alone application, but it runs outside any user
interface framework and links just with the core libraries defobj, collections, and activity.

• mousetraps2, Mousetrap2.m (see page 404). Variant of mousetraps that schedules actions at
subclock divisions of a coarser-grained schedule. Used to test this capability; intended only for
specialized use when ordinary time units can't be divided finely enough.

• strtest.m (see page 404). Simple test of basic operations on the String type.

A.2.2. Support files
• Makefile (see page 404). Make file for all programs in the directory. Change the SWARMHOME

macro setting at the top to reflect installation location of the swarm libraries relative to the local
directory. This make file requires the GNU make program; neither Sun nor other makes are
compatible with the GNU-specific conventions used.

• grid.h (see page 404). Header file that defines the GridTurtle object type. This file is also compiled
to publish external definitions for the grid module. Conventions for coding the header file of a library
module are not fully documented yet, but this is a working sample.

• grid.m (see page 404). Initialization of the grid module. Not normally a part of an application
program, but included to test module facilities outside of a library. Methods of coding this file are not
currently documented, but this is a working sample.

• GridTurtle.m (see page 404). Code for the class that implements the GridTurtle object type. The
interface for this type is specified in the file grid.h. Methods for coding classes that implement a type
(see library interface conventions (see page 404) for a summary of the differences between types and
classes) are not currently documented. The important thing to know is simply that a library
implements all the messages declared as part of a type.

406

Appendix B. Library Interface Conventions

B.1. Overview
Some of the basic Swarm libraries are implemented using object definition conventions established by
the Defobj Library (see page 26). This document explains how to read and interpret the header files and
interface definitions published by such libraries. It also explains the typical structure of documentation
provided for libraries that follow these conventions.

B.2. Library Header File
For a library that adopts these conventions, a library is not merely a collection of source files that are
compiled into a library archive under control of a make file. Instead, Objective C source files in the
library are processed in a special way to publish their definitions not only as header files, but as
generated objects available at runtime to make full use of the library. A library processed in this way is
referred to as as a "package." (Note: some of the newer Swarm libraries, such as objectbase and random,
don't undergo this special processing and yet still follow all the library interface conventions described
in this document.)

The Defobj Library (see page 26) library documents the full details of special processing performed on a
package. For simply using a library, the key fact to keep in mind is that the entire public interface to a
library is declared in the one header file having the same name as the package itself, plus a trailing .h
suffix. Additionally, the header file of a library normally documents only its public interface, in a way
that is completely separated from the implementation of the objects it specifies.

The separation of implementation means that a library publishes its interface entirely without reference
to any Objective C classes which implement its objects. Even though classes are often thought of as
separating the interface of an object from its implementation, this separation is far from complete. Not
only do classes typically contain many internal methods not intended for external use, but they also
define a particular storage format for an object defined as instance variables.

A library instead publishes its interface as a set of public object types. These object types may also be
supplemented by global object constants called symbols. Both these kinds of definitions normally appear
only in the header file of a library. The remaining source files in a library normally contain the classes
which implement the object types.

In a library, the files which implement classes (including class header files), need not ever be referenced
simply to make use of the implemented capabilities of the library object types. Documentation for the
library is normally expressed entirely in terms of the types and symbols published in the library header
file. If a feature does not appear in the library header file, it should not be considered part of a supported
public interface.

Individual class header files are required to subclass from existing implementations, but interfaces for
subclassing are an entirely separate issue from normal public use of an object library. Class inheritance
can be a powerful implementation technique, but extension of an existing class framework is typically
safe only if performed in explicitly permitted ways. If a library supports subclassing at all, it must
carefully state which classes may be subclassed and in what ways. For a library package, this
information is supplied outside the library header file. The library header file specifies only the

Appendix B. Library Interface Conventions

407

interfaces by which objects are intended to be used, whether implemented by a local class or an external
subclass.

Remaining sections of this document explain the declarations which appear in a library header file, and
end with a suggested structure of documentation to be provided for a library. The libraries of Swarm
mostly follow this structure.

B.3. Object Type Definitions
The interfaces to objects defined by a library are specified by object type definitions. An object type
defines only a set of messages which may be sent to an object over various phases of its lifetime. An
object type makes no commitment to the classes that might be used to implement the object.

Multiple classes may all implement the same messages belonging to a type. The independence of types
and classes means that different classes can provide alternate implementations of the same object type.
For example, a particular implementing class might be selected to optimize the implementation for a
particular case.

Object types are similar to protocols defined by Objective C, and the declarations appearing in a library
header file are a minor adaptation of Objective C protocol syntax. A key difference from protocols is
that object types are published as real external objects that may be used at runtime to create instances of
a type. A further difference is that the object types of the Defobj Library (see page 26) are divided into
separate interfaces that define distinct phases of an object's life cycle.

B.4. GridTurtle example
An example will help illustrate the features of type definitions supported by the defobj library.
Throughout documentation of the basic Swarm libraries, a series of running examples will be based on a
simple type of object belonging to sample Swarm simulations. This type of object is an agent that move
around on a two-dimensional grid, always moving in a current direction that it maintains internally. This
agent is like a "turtle" of the original Logo system, except that its position is constrained to discrete
integer values of its X-Y coordinates, and its direction is always one of the four orthogonal directions
north, east, south, or west.

Following is a complete library header file for a library which defines such an object, called GridTurtle:

/*
Name: GridTurtle.h
Description: object type for Swarm example programs
Library: grid
*/

#import <defobj.h>

@deftype GridTurtle <Create, Drop, CREATABLE>
CREATING
- (void) setXLocMax: (int)xLocMax;
- (void) setYLocMax: (int)yLocMax;
SETTING
- (void) setXLoc: (int)xLoc;

Appendix B. Library Interface Conventions

408

- (void) setYLoc: (int)yLoc;
- (void) setXLoc: xLoc setYLoc: yLoc;

- (void) setDirection: direction;
USING
- (int) getXLoc;
- (int) getYLoc;

- getDirection;

- (void) move: (int)distance;
- (void) turn: (int)angle; // angle measured in units of pi/2 (90
deg.)
- (void) print;
@end

id <Symbol> North, East, South, West;

#import "grid.xt"

An object type is defined by an @deftype declaration. (Note: newer libraries, including objectbase and
random, now follow the library interface conventions without using this special @deftype tag. Instead
they use just an ordinary @protocol declaration, but otherwise they follow all the structure explained in
this document.) The syntax of such declaration is identical to that of an Objective C @protocol
definition, except for the entirely uppercase keywords (CREATABLE, CREATING, SETTING,
USING) appearing in the GridTurtle example above. All these modifications of Objective C syntax are
accomplished by simple preprocessor macros; no extensions to the language compiler are involved.

When this library header file is processed (by a special rule in a make file), an external object id with the
name GridTurtle is automatically published. The name of a defined type becomes an ordinary object that
accepts specific messages defined by the defobj library. The Defobj Library (see page 26) explains the
details of such messages; the only purpose here is to explain the basic sections of a deftype declaration.

deftype declarations follow the syntax as Objective C protocols for inheriting messages from each other:
a list of names enclosed in angle brackets (e.g., <Create, Drop, ...> above) gives the names of other
declared types containing messages to be supported by the new type as well. (These types referenced
here are defined by the imported file <defobj.h>.) Like protocols, full multiple inheritance of types is
supported. The same messages may be inherited any number of times through any path with no different
effect than if inherited or declared just once, so long as no conflicts occur in any of their argument or
return types.

The CREATABLE tag appearing in the inherited type list above is a special type which defines no
messages of its own, but merely marks the type as one which supports direct creation of instances of the
type. Without this tag, the only role of a type is to define messages for inheritance by other types. With
this tag, the global type object has a particular implementation that supports object creation using
standard messages defined in defobj.

The declared messages of the type may be separated into sections marked by the special uppercase tags
such as CREATING, SETTING, and USING above. (Currently, these are the only such tags which may
occur.) These sections each define messages belonging to a particular defined "interface" of the object

Appendix B. Library Interface Conventions

409

type, which are further combined into distinct "phases" of an object lifecycle supported by defobj
messages. Further explanation of the interfaces and phases defined by this example are provided in the
Usage Guide of the defobj library.

B.5. Global Object Symbols
The grid.h header file above also contains the declaration:

id <Symbol> North, East, South, West;

Lines that declare global id variables of type Symbol, EventType, Warning, or Error (using the angle
bracket syntax of id variables conforming to a protocol) are processed somewhat like deftype
declarations in that they also produce global id variables initialized to support particular messages
defined by defobj. These global variables, however, are not used to define or implement other message
interfaces, but only to define certain fixed capabilities referenced through their global object names.

If declared as a Symbol, as in the case here, the generated objects have no particular behavior of their
own (other than the character string of their name), but only serve to define unique global id constants
which may be used as distinct named values in messages. In this example, the current direction of a
GridTurtle object is represented by one of the symbol names North, East, South, or West. These values
are like the enum constants of the C language, except that they are defined as full Objective C objects,
and may be used with further restrictions. An EventType, or a Warning or Error, defines a further
subtype of a Symbol constant with further specialized messages documented in defobj.

B.6. Interface Design Convention
A variety of rules on naming and declaration of object types, symbols, and messages are followed by
many of the Swarm libraries. These rules help establish a basic consistency on the library interfaces.
Following is a list of such conventions that apply to a public library interface, some but not all of which
are derived from standard Smalltalk or Objective C coding practice:

• Names of global object constants are capitalized. In the public interface, such names include types
and symbols.

• Recapitalization separates words of a compound name (e.g., GridTurtle). Underscores are generally
not used.

• Message names start with a lower-case character, and are named using verbs. Nouns that represent
gettable or settable components of object state (e.g., Direction of a GridTurtle), are prefixed by get or
set to indicate the action being performed.

• The Smalltalk convention that a message return the receiver of a message if there is no other specific
return value is generally *not* followed. If there is no specific return value needed from a message
the return type is declared (void).

Appendix B. Library Interface Conventions

410

B.7. Documentation Structure
The following standard sections of documentation are suggested for libraries that follow the strict
interface vs. implementation separation of library packages, each with purpose and typical contents as
given:

• Usage Guide. Tutorial introduction to a library. Focuses on the most common uses in an order
reflecting the needs of a first-time user. Most explanation by means of progressively elaborated
examples. Serves as a guided tour of major library capabilities. No attempt at reference-style
completeness.

• Advanced Usage Guide. Continues overview of all significant capabilities of a library, including
those which might be needed by advanced users customizing or extending built-in capability.
Provides examples of specialized uses extending beyond normal, basic usage, but still using built-in
features of the library framework. Helps to simplify the Usage Guide by providing a location for
overflow of more advanced features.

• Interface Reference. Complete, concise summary of all features of a library. Fills the role a Unix
"man page" in providing comprehensive definition of library services. Little or no concern to provide
path of tutorial introduction. Does not contain extended examples, at most only fragments of
examples which serve needs of specification.

• Subclassing Reference. Documents the rules for writing new classes which subclass from classes that
implement the library. Because a library might use complex combinations of classes to implement the
range of behaviors defined by its types, the classes in a library are not automatically usable as
superclasses of user-defined classes. Each library documents which classes are available for use as
superclasses, and the specific rules that must be followed when subclassing from these classes.

• Implementation Notes. Explains the structure of classes by which the types of a library are
implemented. Summarizes the status of implementation if still incomplete and lists items of possible
future work. Provides overview and high-level structure of the implementation in whatever ways
would best guide a reader of implementation source code. May also discuss tradeoffs considered
along with references to related or supporting work.

411

Appendix C. Licenses for Distribution of Swarm
and Applications

• Swarm libraries. Swarm is distributed under the GNU Library General Public License
(http://www.gnu.org/copyleft/lgpl.html) (LGPL).

• Swarm example applications and documentation. The Swarm example applications and the
Swarm documentation are distributed under the GNU General Public License
(http://www.gnu.org/copyleft/gpl.html) (GPL).

Important: More information on these GNU LGPL and GPL, and free software in general, please
consult the Free Software Foundation (http://www.gnu.org) .

412

Protocol Index
ACGgen -- 225
Action -- 143
ActionArgs -- 144
ActionCache -- 298
ActionCall -- 145
ActionChanged -- 145
ActionConcurrent -- 146
ActionCreating -- 147
ActionCreatingCall -- 148
ActionCreatingForEach -- 149
ActionCreatingTo -- 150
ActionForEach -- 151
ActionForEachHomogeneous -- 152
ActionGroup -- 153
ActionSelector -- 154
ActionTarget -- 154
ActionTo -- 155
ActionType -- 156
ActivationOrder -- 157
ActiveGraph -- 365
ActiveOutFile -- 366
Activity -- 158
ActivityControl -- 197
ActivityIndex -- 160
AppendFile -- 278
ArchivedGeometryWidget -- 321
Archiver -- 38
ArchiverArray -- 92
ArchiverKeyword -- 93
ArchiverList -- 94
ArchiverPair -- 95
ArchiverQuoted -- 96
ArchiverValue -- 98
Arguments -- 40
Array -- 99
AutoDrop -- 161
Averager -- 367
BasicRandomGenerator -- 225
BehaviorPhase -- 44
BernoulliDist -- 226
BinomialDist -- 227
BooleanDistribution -- 228
Button -- 322
ButtonPanel -- 323
C2LCGXgen -- 229
C2MRG3gen -- 229
C2TAUS1gen -- 230

C2TAUS2gen -- 230
C2TAUS3gen -- 231
C2TAUSgen -- 231
C3MWCgen -- 232
C4LCGXgen -- 232
CREATABLE -- 44
Ca2d -- 386
Canvas -- 324
CanvasAbstractItem -- 325
CanvasItem -- 326
CheckButton -- 326
Circle -- 327
ClassDisplayHideButton -- 328
ClassDisplayLabel -- 328
Collection -- 103
Colormap -- 329
CommonGenerator -- 234
CommonProbeDisplay -- 298
CompareFunction -- 104
CompleteProbeDisplay -- 299
CompleteProbeDisplayLabel -- 330
CompleteProbeMap -- 198
CompleteVarMap -- 198
CompositeItem -- 330
CompositeWindowGeometryRecordName -- 300
CompoundAction -- 162
ConcurrentGroup -- 163
ConcurrentGroupType -- 164
ConcurrentSchedule -- 165
ControlPanel -- 301
ConwayLife2d -- 387
Copy -- 45
Create -- 46
CreatedClass -- 48
CustomProbeMap -- 199
Customize -- 49
DblBuffer2d -- 388
DefaultMember -- 105
DefaultOrder -- 167
DefaultProbeMap -- 200
DefinedClass -- 51
DefinedObject -- 52
Diffuse2d -- 389
Discrete2d -- 390
DoubleDistribution -- 234
Drawer -- 331
Drop -- 54
EZAverageSequence -- 368
EZBin -- 369
EZDistribution -- 372
EZGraph -- 373
EZSequence -- 377

Protocol Index

413

EmptyProbeMap -- 200
Entropy -- 378
Entry -- 331
Error -- 55
EventType -- 56
ExponentialDist -- 235
FAction -- 167
FActionCreating -- 167
FActionCreatingForEachHeterogeneous -- 168
FActionCreatingForEachHomogeneous -- 168
FActionForEach -- 169
FActionForEachHeterogeneous -- 169
FActionForEachHomogeneous -- 170
FArguments -- 57
FCall -- 59
ForEach -- 106
ForEachActivity -- 170
ForEachKey -- 107
Form -- 332
Frame -- 333
FunctionGraph -- 380
GUIComposite -- 302
GUISwarm -- 303
GammaDist -- 236
GetName -- 60
GetOwner -- 61
GetSubactivityAction -- 171
Graph -- 334
GraphElement -- 335
Grid2d -- 393
GridData -- 394
HDF5 -- 62
HDF5Archiver -- 64
HDF5CompoundType -- 65
Histogram -- 336
InFile -- 279
Index -- 108
InputStream -- 113
InputWidget -- 338
Int2dFiler -- 395
IntegerDistribution -- 237
InternalState -- 238
KeyedCollection -- 115
KeyedCollectionIndex -- 115
LCG1gen -- 239
LCG2gen -- 239
LCG3gen -- 240
LCGgen -- 240
Label -- 339
Line -- 339
LinkItem -- 340
LispArchiver -- 66

List -- 116
ListIndex -- 117
ListShuffler -- 118
LogNormalDist -- 241
MRG5gen -- 241
MRG6gen -- 242
MRG7gen -- 242
MRGgen -- 243
MT19937gen -- 243
MWCAgen -- 244
MWCBgen -- 244
Map -- 119
MapIndex -- 120
MemberBlock -- 122
MemberSlot -- 122
MessageProbe -- 202
MessageProbeEntry -- 341
MessageProbeWidget -- 304
MultiVarProbeDisplay -- 306
MultiVarProbeWidget -- 306
NSelect -- 281
NodeItem -- 342
Normal -- 245
NormalDist -- 246
Object2dDisplay -- 396
ObjectLoader -- 283
ObjectSaver -- 284
Offsets -- 123
OrderedSet -- 124
OutFile -- 286
OutputStream -- 127
OvalNodeItem -- 343
PMMLCG1gen -- 247
PMMLCG2gen -- 247
PMMLCG3gen -- 248
PMMLCG4gen -- 248
PMMLCG5gen -- 249
PMMLCG6gen -- 249
PMMLCG7gen -- 250
PMMLCG8gen -- 250
PMMLCG9gen -- 251
PMMLCGgen -- 251
PSWBgen -- 252
Permutation -- 127
PermutationItem -- 128
PermutedIndex -- 129
Pixmap -- 344
PoissonDist -- 253
ProbabilityDistribution -- 256
Probe -- 203
ProbeCanvas -- 345
ProbeConfig -- 204

Protocol Index

414

ProbeDisplay -- 307
ProbeDisplayManager -- 309
ProbeLibrary -- 206
ProbeMap -- 208
QSort -- 288
RETURNABLE -- 66
RWC2gen -- 256
RWC8gen -- 256
RandomBitDist -- 257
Raster -- 346
Rectangle -- 347
RectangleNodeItem -- 348
RelativeTime -- 171
RepeatInterval -- 172
SCGgen -- 257
SWB1gen -- 258
SWB2gen -- 258
SWB3gen -- 259
SWBgen -- 259
Schedule -- 173
ScheduleActivity -- 175
ScheduleItem -- 349
Serialization -- 67
Set -- 130
SetInitialValue -- 72
SimpleGenerator -- 260
SimpleProbeDisplay -- 309
SimpleProbeDisplayHideButton -- 350
SimpleRandomGenerator -- 261
SingleProbeDisplay -- 310
SingletonGroups -- 176
SplitGenerator -- 263
SplitRandomGenerator -- 264
String -- 131
SuperButton -- 350
Swarm -- 210
SwarmActivity -- 177
SwarmEnvironment -- 403
SwarmObject -- 211
SwarmProcess -- 178
Symbol -- 73
SynchronizationType -- 179
TGFSRgen -- 264
TT403gen -- 265
TT775gen -- 265
TT800gen -- 266
TextItem -- 351
UName -- 289
UniformDoubleDist -- 267
UniformIntegerDist -- 269
UniformUnsignedDist -- 270
UnsignedDistribution -- 271

Value2dDisplay -- 397
VarProbe -- 212
VarProbeEntry -- 352
VarProbeLabel -- 353
Warning -- 74
Widget -- 354
WindowGeometryRecord -- 356
WindowGeometryRecordName -- 311
Zone -- 76
ZoomRaster -- 357

415

Method Index
+conformsTo:

defobj/DefinedObject/Using -- 53
+create:

defobj/Create/Creating -- 47
+create:forClass:

objectbase/EmptyProbeMap/Creati
ng -- 200

+create:forClass:withIdentifiers::
objectbase/CustomProbeMap/Creat
ing -- 199

+create:setA:setV:setW:setStateFromSeed:
random/SplitGenerator/Creating --
263

+create:setA:setV:setW:setStateFromSeeds:
random/SplitGenerator/Creating --
263

+create:setAutoDrop:
activity/Schedule/Creating -- 175

+create:setBaseName:
simtools/UName/Creating -- 290

+create:setBaseNameObject:
simtools/UName/Creating -- 290

+create:setC:
collections/String/Creating -- 131

+create:setCount:
collections/Array/Creating -- 100

+create:setDisplayWidget:colormap:setDiscrete2dTo
Display:

space/Value2dDisplay/Creating --
397

+create:setDisplayWidget:setDiscrete2dToDisplay:se
tDisplayMessage:

space/Object2dDisplay/Creating --
396

+create:setExpr:
collections/InputStream/Creating --
113

+create:setFileName:
analysis/EZGraph/Creating -- 376

+create:setFileOutput:
analysis/EZGraph/Creating -- 376

+create:setFileStream:
collections/InputStream/Creating --
113
collections/OutputStream/Creating
-- 127

+create:setGenerator:
random/BinomialDist/Creating --
228
random/ProbabilityDistribution/Cre
ating -- 256

+create:setGenerator:setAlpha:setBeta:
random/GammaDist/Creating --
236

+create:setGenerator:setDoubleMin:setMax:
random/UniformDoubleDist/Creati
ng -- 267

+create:setGenerator:setIntegerMin:setMax:
random/UniformIntegerDist/Creati
ng -- 269

+create:setGenerator:setMean:
random/ExponentialDist/Creating -
- 235

+create:setGenerator:setMean:setStdDev:
random/Normal/Creating -- 246

+create:setGenerator:setMean:setVariance:
random/Normal/Creating -- 246

+create:setGenerator:setNumTrials:setProbability:
random/BinomialDist/Creating --
228

+create:setGenerator:setOccurRate:setInterval:
random/PoissonDist/Creating --
254

+create:setGenerator:setProbability:
random/BernoulliDist/Creating --
226

+create:setGenerator:setUnsignedMin:setMax:
random/UniformUnsignedDist/Cre
ating -- 270

+create:setGenerator:setVirtualGenerator:
random/BinomialDist/Creating --
228
random/ProbabilityDistribution/Cre
ating -- 256

+create:setGenerator:setVirtualGenerator:setAlpha:se
tBeta:

random/GammaDist/Creating --
236

Method Index

416

+create:setGenerator:setVirtualGenerator:setDouble
Min:setMax:

random/UniformDoubleDist/Creati
ng -- 267

+create:setGenerator:setVirtualGenerator:setInteger
Min:setMax:

random/UniformIntegerDist/Creati
ng -- 269

+create:setGenerator:setVirtualGenerator:setMean:
random/ExponentialDist/Creating -
- 235

+create:setGenerator:setVirtualGenerator:setMean:se
tStdDev:

random/Normal/Creating -- 246
+create:setGenerator:setVirtualGenerator:setMean:se
tVariance:

random/Normal/Creating -- 246
+create:setGenerator:setVirtualGenerator:setNumTri
als:setProbability:

random/BinomialDist/Creating --
228

+create:setGenerator:setVirtualGenerator:setOccurRa
te:setInterval:

random/PoissonDist/Creating --
254

+create:setGenerator:setVirtualGenerator:setProbabil
ity:

random/BernoulliDist/Creating --
226

+create:setGenerator:setVirtualGenerator:setUnsigne
dMin:setMax:

random/UniformUnsignedDist/Cre
ating -- 270

+create:setHDF5Container:setPrefix:
analysis/EZGraph/Creating -- 376

+create:setMemberBlock:setCount:
collections/MemberBlock/Creating
-- 122

+create:setName:
simtools/AppendFile
[Deprecated]/Creating -- 278
simtools/OutFile
[Deprecated]/Creating -- 287
simtools/InFile
[Deprecated]/Creating -- 280
defobj/Symbol/Creating -- 73

+create:setPath:
defobj/HDF5Archiver/Creating --
64
defobj/LispArchiver/Creating -- 66

+create:setProbedSelector:
objectbase/MessageProbe/Creating
-- 202

+create:setRepeatInterval:
activity/Schedule/Creating -- 175

+create:setSelector:
defobj/FArguments/Creating -- 58

+create:setSizeX:Y:
space/Discrete2d/Creating -- 391

+create:setSizeX:Y:setDiffusionConstant:setEvaporat
ionRate:

space/Diffuse2d/Creating -- 389
+create:setStateFromSeed:

random/SimpleGenerator/Creating
-- 260

+create:setStateFromSeeds:
random/SimpleGenerator/Creating
-- 260

+create:setTitle:setAxisLabelsX:Y:setWindowGeom
etryRecordName:

analysis/EZGraph/Creating -- 376
+create:setTitle:setAxisLabelsX:Y:setWindowGeom
etryRecordName:setSaveSizeFlag:

analysis/EZGraph/Creating -- 376
+create:setUniformRandom:

collections/ListShuffler/Creating --
118

+create:setWindowGeometryRecordName:
gui/ArchivedGeometryWidget/Crea
ting -- 321

+create:target:methodName:arguments:
defobj/FCall/Creating -- 59

+create:target:selector:arguments:
defobj/FCall/Creating -- 59

+create:withName:
simtools/AppendFile
[Deprecated]/Creating -- 278
simtools/OutFile
[Deprecated]/Creating -- 287
simtools/InFile
[Deprecated]/Creating -- 280

+createArgc:Argv:appName:version:bugAddress:opti
ons:optionFunc:inhibitExecutableSearchFlag:

defobj/Arguments/Creating -- 42

Method Index

417

+createBegin
swarm/SwarmEnvironment/Creatin
g -- 403

+createBegin:
defobj/Create/Creating -- 47

+createOwnerGraph:
gui/GraphElement/Creating -- 335

+createParent:
gui/Widget/Creating -- 355

+createWithDefaults:
random/ProbabilityDistribution/Cre
ating -- 256
random/CommonGenerator/Creatin
g -- 234

+customizeBegin:
defobj/Customize/Creating -- 50

+getMethodFor:
defobj/DefinedClass/Using -- 51

+getSuperclass
defobj/DefinedClass/Using -- 51

+getTypeImplemented
defobj/DefinedClass/Using -- 51

+initSwarm:version:bugAddress:argCount:args:
swarm/SwarmEnvironment/Creatin
g -- 403

+isSubclass:
defobj/DefinedClass/Using -- 51

+load:from:
simtools/ObjectLoader
[Deprecated]/Creating -- 283

+load:fromAppConfigFileNamed:
simtools/ObjectLoader
[Deprecated]/Creating -- 283

+load:fromAppDataFileNamed:
simtools/ObjectLoader
[Deprecated]/Creating -- 283

+load:fromFileNamed:
simtools/ObjectLoader
[Deprecated]/Creating -- 283

+reverseOrderOf:
simtools/QSort/Using -- 288

+save:to:
simtools/ObjectSaver
[Deprecated]/Creating -- 285

+save:to:withTemplate:
simtools/ObjectSaver
[Deprecated]/Creating -- 285

+save:toFileNamed:
simtools/ObjectSaver
[Deprecated]/Creating -- 285

+save:toFileNamed:withTemplate:
simtools/ObjectSaver
[Deprecated]/Creating -- 285

+select:from:into:
simtools/NSelect/Using -- 281

+setTypeImplemented:
defobj/DefinedClass/Using -- 51

+sortNumbersIn:
simtools/QSort/Using -- 288

+sortNumbersIn:using:
simtools/QSort/Using -- 288

+sortObjectsIn:
simtools/QSort/Using -- 288

+sortObjectsIn:using:
simtools/QSort/Using -- 288

-_getEmptyActionConcurrent_
activity/ConcurrentGroup/Using --
163

-_getSubactivityAction_
activity/GetSubactivityAction/Usin
g -- 171

-_performAction_:
activity/Action/Using -- 143

-_setActionConcurrent_:
activity/ConcurrentGroup/Using --
163

-activateIn:
objectbase/Swarm/Using -- 210
activity/ActionType/Using -- 156

-add:
collections/Set/Using -- 130

-addAfter:
collections/ListIndex/Using -- 117

-addArgument:ofObjCType:
defobj/FArguments/Creating -- 58

-addArgument:ofType:
defobj/FArguments/Creating -- 58

-addBefore:
collections/ListIndex/Using -- 117

-addBoolean:
defobj/FArguments/Creating -- 58

-addButtonName:method:
gui/ButtonPanel/Using -- 323

-addButtonName:target:method:
gui/ButtonPanel/Using -- 323

Method Index

418

-addChar:
defobj/FArguments/Creating -- 58

-addDouble:
defobj/FArguments/Creating -- 58

-addDoubleToVector:
defobj/HDF5/Using -- 63

-addFirst:
collections/List/Using -- 116

-addFloat:
defobj/FArguments/Creating -- 58

-addInt:
defobj/FArguments/Creating -- 58

-addJavaObject:
defobj/FArguments/Creating -- 58

-addLast:
collections/List/Using -- 116
activity/ActivationOrder/Using --
157

-addLineName:Boolean:
gui/Form/Using -- 332

-addLineName:Double:
gui/Form/Using -- 332

-addLineName:Int:
gui/Form/Using -- 332

-addLong:
defobj/FArguments/Creating -- 58

-addLongDouble:
defobj/FArguments/Creating -- 58

-addLongLong:
defobj/FArguments/Creating -- 58

-addObject:
defobj/FArguments/Creating -- 58

-addOption:key:arg:flags:doc:group:
defobj/Arguments/Creating -- 42

-addOptions:
defobj/Arguments/Creating -- 42

-addProbe:
objectbase/ProbeMap/Using -- 209

-addProbeDisplay:
simtoolsgui/ProbeDisplayManager/
Using -- 309

-addProbeMap:
objectbase/ProbeMap/Using -- 209

-addProbesForClass:withIdentifiers::
objectbase/CustomProbeMap/Settin
g -- 199

-addRef:withArgument:
defobj/DefinedObject/Using -- 53

-addSelector:
defobj/FArguments/Creating -- 58

-addShort:
defobj/FArguments/Creating -- 58

-addString:
defobj/FArguments/Creating -- 58

-addUnsigned:
defobj/FArguments/Creating -- 58

-addUnsignedChar:
defobj/FArguments/Creating -- 58

-addUnsignedLong:
defobj/FArguments/Creating -- 58

-addUnsignedLongLong:
defobj/FArguments/Creating -- 58

-addUnsignedShort:
defobj/FArguments/Creating -- 58

-addWidget:X:Y:centerFlag:
gui/Canvas/Using -- 324

-addX:Y:
gui/GraphElement/Using -- 335

-advanceAll
random/SplitGenerator/Using --
263

-advanceGenerator:
random/SplitGenerator/Using --
263

-allSameClass
collections/Collection/Using -- 103

-alloc:
defobj/Zone/Using -- 78

-allocBlock:
defobj/Zone/Using -- 78

-allocIVars:
defobj/Zone/Using -- 78

-allocIVarsComponent:
defobj/Zone/Using -- 78

-allocLattice
space/Discrete2d/Creating -- 391

-assignIvar:
defobj/HDF5/Using -- 63

-at:
collections/KeyedCollection/Using
-- 115

-at:addMethod:
defobj/CreatedClass/Creating -- 48

-at:createAction:
activity/Schedule/Using -- 175

-at:createActionCall:
activity/Schedule/Using -- 175

Method Index

419

-at:createActionCall::
activity/Schedule/Using -- 175

-at:createActionCall:::
activity/Schedule/Using -- 175

-at:createActionCall::::
activity/Schedule/Using -- 175

-at:createActionForEach:message:
activity/Schedule/Using -- 175

-at:createActionForEach:message::
activity/Schedule/Using -- 175

-at:createActionForEach:message:::
activity/Schedule/Using -- 175

-at:createActionForEach:message::::
activity/Schedule/Using -- 175

-at:createActionForEachHomogeneous:message:
activity/Schedule/Using -- 175

-at:createActionTo:message:
activity/Schedule/Using -- 175

-at:createActionTo:message::
activity/Schedule/Using -- 175

-at:createActionTo:message:::
activity/Schedule/Using -- 175

-at:createActionTo:message::::
activity/Schedule/Using -- 175

-at:createFAction:
activity/Schedule/Using -- 175

-at:createFActionForEachHeterogeneous:call:
activity/Schedule/Using -- 175

-at:createFActionForEachHomogeneous:call:
activity/Schedule/Using -- 175

-at:insert:
collections/Map/Using -- 119

-at:owner:widget:x:y:
gui/ScheduleItem/Using -- 349

-at:replace:
collections/Map/Using -- 119

-atOffset:
collections/Offsets/Using -- 123

-atOffset:put:
collections/Offsets/Using -- 123

-attachToActivity:
objectbase/ActivityControl/Using -
- 197

-begin:
objectbase/ProbeMap/Using -- 209
collections/Collection/Using -- 103

-beginPermuted:
collections/Collection/Using -- 103

-black
gui/Colormap/Using -- 329

-buildActions
objectbase/Swarm/Using -- 210

-buildObjects
objectbase/Swarm/Using -- 210

-catArrayRank:
collections/OutputStream/Using --
127

-catBoolean:
collections/OutputStream/Using --
127

-catC:
collections/String/Using -- 131
collections/OutputStream/Using --
127

-catChar:
collections/OutputStream/Using --
127

-catClass:
collections/OutputStream/Using --
127

-catDouble:
collections/OutputStream/Using --
127

-catEndArray
collections/OutputStream/Using --
127

-catEndCons
collections/OutputStream/Using --
127

-catEndExpr
collections/OutputStream/Using --
127

-catEndFunction
collections/OutputStream/Using --
127

-catEndList
collections/OutputStream/Using --
127

-catEndMakeClass
collections/OutputStream/Using --
127

-catEndMakeInstance
collections/OutputStream/Using --
127

-catEndParse
collections/OutputStream/Using --
127

Method Index

420

-catEndQuotedList
collections/OutputStream/Using --
127

-catFloat:
collections/OutputStream/Using --
127

-catInt:
collections/OutputStream/Using --
127

-catKeyword:
collections/OutputStream/Using --
127

-catLiteral:
collections/OutputStream/Using --
127

-catLong:
collections/OutputStream/Using --
127

-catLongDouble:
collections/OutputStream/Using --
127

-catLongLong:
collections/OutputStream/Using --
127

-catNil
collections/OutputStream/Using --
127

-catPointer:
collections/OutputStream/Using --
127

-catSeparator
collections/OutputStream/Using --
127

-catShort:
collections/OutputStream/Using --
127

-catStartCons
collections/OutputStream/Using --
127

-catStartExpr
collections/OutputStream/Using --
127

-catStartFunction:
collections/OutputStream/Using --
127

-catStartList
collections/OutputStream/Using --
127

-catStartMakeClass:
collections/OutputStream/Using --
127

-catStartMakeInstance:
collections/OutputStream/Using --
127

-catStartParse
collections/OutputStream/Using --
127

-catStartQuotedList
collections/OutputStream/Using --
127

-catString:
collections/OutputStream/Using --
127

-catSymbol:
collections/OutputStream/Using --
127

-catType:
collections/OutputStream/Using --
127

-catUnsigned:
collections/OutputStream/Using --
127

-catUnsignedLong:
collections/OutputStream/Using --
127

-catUnsignedLongLong:
collections/OutputStream/Using --
127

-catUnsignedPair::
collections/OutputStream/Using --
127

-catUnsignedShort:
collections/OutputStream/Using --
127

-checkDatasetName:
defobj/HDF5/Using -- 63

-checkGeometry:
gui/Canvas/Using -- 324

-checkName:
defobj/HDF5/Using -- 63

-clicked
gui/CanvasAbstractItem/Using --
325

-clone:
objectbase/ProbeMap/Using -- 209
objectbase/Probe/Using -- 204

Method Index

421

-compare:
defobj/DefinedObject/Using -- 53
collections/Index/Using -- 111

-conformsTo:
defobj/DefinedObject/Using -- 53

-contains:
collections/Collection/Using -- 103

-containsKey:
collections/KeyedCollection/Using
-- 115

-convertToType:dest:
collections/ArchiverArray/Using --
92

-copy:
defobj/Copy/Using -- 45
collections/Collection/Using -- 103

-copyDiscrete2d:toDiscrete2d:
space/Discrete2d/Using -- 391

-copyIVars:
defobj/Zone/Using -- 78

-copyIVarsComponent:
defobj/Zone/Using -- 78

-createAction:
activity/ActionCreating/Using --
147

-createActionCall:
activity/ActionCreatingCall/Using -
- 148

-createActionCall::
activity/ActionCreatingCall/Using -
- 148

-createActionCall:::
activity/ActionCreatingCall/Using -
- 148

-createActionCall::::
activity/ActionCreatingCall/Using -
- 148

-createActionForEach:message:
activity/ActionCreatingForEach/Us
ing -- 149

-createActionForEach:message::
activity/ActionCreatingForEach/Us
ing -- 149

-createActionForEach:message:::
activity/ActionCreatingForEach/Us
ing -- 149

-createActionForEach:message::::
activity/ActionCreatingForEach/Us
ing -- 149

-createActionForEachHomogeneous:message:
activity/ActionCreatingForEach/Us
ing -- 149

-createActionTo:message:
activity/ActionCreatingTo/Using --
150

-createActionTo:message::
activity/ActionCreatingTo/Using --
150

-createActionTo:message:::
activity/ActionCreatingTo/Using --
150

-createActionTo:message::::
activity/ActionCreatingTo/Using --
150

-createArchivedCompleteProbeDisplay:name:
swarm/SwarmEnvironment/Using -
- 403

-
createArchivedCompleteProbeDisplayFor:variableNa
me:

simtoolsgui/ProbeDisplayManager/
Using -- 309

-
createArchivedDefaultProbeDisplayFor:variableNam
e:

simtoolsgui/ProbeDisplayManager/
Using -- 309

-createArchivedProbeDisplay:name:
swarm/SwarmEnvironment/Using -
- 403

-createArchivedProbeDisplayFor:variableName:
simtoolsgui/ProbeDisplayManager/
Using -- 309

-createAverageSequence:withFeedFrom:andSelector:
analysis/EZGraph/Using -- 376

-createBindings
gui/CanvasAbstractItem/Creating --
325

-createCompleteProbeDisplay:
swarm/SwarmEnvironment/Using -
- 403

-createCompleteProbeDisplayFor:
simtoolsgui/ProbeDisplayManager/
Using -- 309

-createCountSequence:withFeedFrom:andSelector:
analysis/EZGraph/Using -- 376

Method Index

422

-createDefaultProbeDisplayFor:
simtoolsgui/ProbeDisplayManager/
Using -- 309

-createElement
gui/Graph/Using -- 334

-createEnd
swarm/SwarmEnvironment/Creatin
g -- 403
defobj/Create/Creating -- 47

-createFAction:
activity/FActionCreating/Using --
167

-createFActionForEachHeterogeneous:call:
activity/FActionCreatingForEachH
eterogeneous/Using -- 168

-createFActionForEachHomogeneous:call:
activity/FActionCreatingForEachH
omogeneous/Using -- 168

-createIndex:fromMember:
collections/KeyedCollection/Using
-- 115

-createItem
gui/CanvasAbstractItem/Creating --
325

-createMaxSequence:withFeedFrom:andSelector:
analysis/EZGraph/Using -- 376

-createMinSequence:withFeedFrom:andSelector:
analysis/EZGraph/Using -- 376

-
createMovingAverageSequence:withFeedFrom:andS
elector:andWidth:

analysis/EZGraph/Using -- 376
-
createMovingStdDevSequence:withFeedFrom:andSel
ector:andWidth:

analysis/EZGraph/Using -- 376
-
createMovingVarianceSequence:withFeedFrom:andS
elector:andWidth:

analysis/EZGraph/Using -- 376
-createPaddedText

gui/NodeItem/Using -- 343
-createProbeDisplay:

swarm/SwarmEnvironment/Using -
- 403

-createProbeDisplayFor:
simtoolsgui/ProbeDisplayManager/
Using -- 309

-createProcCtrl
simtoolsgui/ActionCache/Creating
-- 298

-createSequence:withFeedFrom:andSelector:
analysis/EZGraph/Using -- 376

-createStdDevSequence:withFeedFrom:andSelector:
analysis/EZGraph/Using -- 376

-createText
gui/NodeItem/Using -- 343

-createTotalSequence:withFeedFrom:andSelector:
analysis/EZGraph/Using -- 376

-
createVarianceSequence:withFeedFrom:andSelector:

analysis/EZGraph/Using -- 376
-customizeCopy:

defobj/Customize/Creating -- 50
-customizeEnd

defobj/Customize/Creating -- 50
-decreaseZoom

gui/ZoomRaster/Using -- 357
-deiconify

gui/Frame/Using -- 333
-deleteAll

collections/Collection/Using -- 103
-deliverActions

simtoolsgui/ActionCache/Using --
298

-describe:
defobj/DefinedObject/Using -- 53

-describeForEach:
defobj/Zone/Using -- 78
collections/ForEach/Using -- 106

-describeForEachID:
defobj/Zone/Using -- 78
collections/ForEach/Using -- 106

-describeID:
defobj/DefinedObject/Using -- 53

-disableDestroyNotification
simtoolsgui/GUIComposite/Using -
- 302
gui/Widget/Using -- 355

-display
space/Object2dDisplay/Using --
396
space/Value2dDisplay/Using -- 397

-doTkEvents
simtoolsgui/ActionCache/Using --
298

Method Index

423

-doubleDynamicCallOn:
objectbase/MessageProbe/Using --
202

-draw:X:Y:
gui/Raster/Using -- 347

-drawHistogramWithDouble:
gui/Histogram/Using -- 337

-drawHistogramWithDouble:atLocations:
gui/Histogram/Using -- 337

-drawHistogramWithInt:
gui/Histogram/Using -- 337

-drawHistogramWithInt:atLocations:
gui/Histogram/Using -- 337

-drawPointX:Y:Color:
gui/Raster/Using -- 347

-drawSelf
gui/Raster/Using -- 347

-drawX:Y:
gui/Drawer/Using -- 331

-drop
simtools/OutFile
[Deprecated]/Using -- 287
simtools/InFile [Deprecated]/Using
-- 280
defobj/Drop/Using -- 54
collections/ArchiverValue/Using --
98
collections/ArchiverArray/Using --
92

-dropProbeDisplaysFor:
simtoolsgui/ProbeDisplayManager/
Using -- 309

-dropProbeForMessage:
objectbase/ProbeMap/Using -- 209

-dropProbeForVariable:
objectbase/ProbeMap/Using -- 209

-dropProbeMap:
objectbase/ProbeMap/Using -- 209

-dropSequence:
analysis/EZGraph/Using -- 376

-dumpDirectory
swarm/SwarmEnvironment/Using -
- 403

-dynamicCallOn:
objectbase/MessageProbe/Using --
202

-ellipseX0:Y0:X1:Y1:Width:Color:
gui/Raster/Using -- 347

-enableDestroyNotification:notificationMethod:
simtoolsgui/GUIComposite/Using -
- 302
gui/Widget/Using -- 355

-erase
gui/Raster/Using -- 347

-fastFillWithObject:
space/Discrete2d/Using -- 391

-fastFillWithValue:
space/Discrete2d/Using -- 391

-fileTo:
space/Int2dFiler/Using -- 395

-fillCenteredRectangleX0:Y0:X1:Y1:Color:
gui/ZoomRaster/Using -- 357

-fillRectangleX0:Y0:X1:Y1:Color:
gui/Raster/Using -- 347

-fillWithObject:
space/Discrete2d/Using -- 391

-fillWithValue:
space/Discrete2d/Using -- 391

-findNext:
collections/Index/Using -- 111

-findPrev:
collections/Index/Using -- 111

-flush
defobj/HDF5/Using -- 63

-forEach:
collections/ForEach/Using -- 106

-forEach::
collections/ForEach/Using -- 106

-forEach:::
collections/ForEach/Using -- 106

-forEach::::
collections/ForEach/Using -- 106

-forEachKey:
collections/ForEachKey/Using --
107

-forEachKey::
collections/ForEachKey/Using --
107

-forEachKey:::
collections/ForEachKey/Using --
107

-forEachKey::::
collections/ForEachKey/Using --
107

-free:
defobj/Zone/Using -- 78

Method Index

424

-freeBlock:blockSize:
defobj/Zone/Using -- 78

-freeIVars:
defobj/Zone/Using -- 78

-freeIVarsComponent:
defobj/Zone/Using -- 78

-get
collections/Index/Using -- 111

-get:
collections/MapIndex/Using -- 120

-getAction
activity/Activity/Using -- 160

-getActionCache
simtoolsgui/GUISwarm/Getters --
303

-getActionType
activity/Activity/Using -- 160

-getActivity
objectbase/ActivityControl/Using -
- 197
activity/SwarmProcess/Using --
178

-getAlpha
random/GammaDist/Using -- 236

-getAntithetic
random/CommonGenerator/Using -
- 234

-getAppConfigPath
defobj/Arguments/Using -- 42

-getAppDataPath
defobj/Arguments/Using -- 42

-getAppModeString
defobj/Arguments/Using -- 42

-getAppName
defobj/Arguments/Using -- 42

-getArg1
activity/ActionArgs/Using -- 144

-getArg2
activity/ActionArgs/Using -- 144

-getArg3
activity/ActionArgs/Using -- 144

-getArg:
objectbase/MessageProbe/Using --
202

-getArgCount
objectbase/MessageProbe/Using --
202

-getArgName:
objectbase/MessageProbe/Using --
202

-getArgc
defobj/Arguments/Using -- 42

-getArguments
swarm/SwarmEnvironment/Getters
-- 403
defobj/FCall/Using -- 59

-getArgv
defobj/Arguments/Using -- 42

-getArrayType
collections/ArchiverArray/Using --
92

-getAttribute:
defobj/HDF5/Using -- 63

-getAutoDrop
activity/AutoDrop/Using -- 161

-getAverage
analysis/EZBin/Using -- 371
analysis/Averager/Using -- 368

-getAverager
analysis/EZAverageSequence/Usin
g -- 368

-getBaseType
objectbase/VarProbe/Using -- 214

-getBatchModeFlag
defobj/Arguments/Using -- 42

-getBeta
random/GammaDist/Using -- 236

-getBinColorCount
analysis/EZBin/Using -- 371

-getBinCount
analysis/EZBin/Using -- 371

-getBoolValue
gui/CheckButton/Using -- 326

-getBoolean
collections/ArchiverValue/Using --
98

-getBooleanSample
random/BooleanDistribution/Using
-- 228

-getC
collections/String/Using -- 131

-getCallType
defobj/FCall/Using -- 59

-getCanvas
gui/CanvasAbstractItem/Using --
325

Method Index

425

-getCar
collections/ArchiverPair/Using --
95

-getCdr
collections/ArchiverPair/Using --
95

-getChar
collections/ArchiverValue/Using --
98

-getChar:
simtools/InFile [Deprecated]/Using
-- 280

-getClass
defobj/HDF5/Using -- 63
defobj/DefinedObject/Using -- 53
collections/ArchiverValue/Using --
98

-getCoinToss
random/RandomBitDist/Using --
257

-getCollection
collections/Index/Using -- 111

-getCompareFunction
collections/CompareFunction/Usin
g -- 104

-getCompleteProbeMap
objectbase/Swarm/Using -- 210
objectbase/SwarmObject/Using --
211

-getCompleteProbeMapFor:
objectbase/ProbeLibrary/Using --
206

-getCompleteProbeMapForObject:
objectbase/ProbeLibrary/Using --
206

-getCompleteVarMapFor:
objectbase/ProbeLibrary/Using --
206

-getCompleteVarMapForObject:
objectbase/ProbeLibrary/Using --
206

-getCompleted
swarm/SwarmEnvironment/Getters
-- 403

-getComponentZone
defobj/Zone/Using -- 78

-getCompoundType
defobj/HDF5/Using -- 63

-getConcurrentGroup
activity/ActionConcurrent/Using --
146

-getConcurrentGroupType
activity/ConcurrentGroupType/Usi
ng -- 164

-getConfigPath
defobj/Arguments/Using -- 42

-getConsFormatFlag
collections/ArchiverPair/Using --
95

-getControlPanel
simtoolsgui/GUISwarm/Getters --
303

-getControlStateNextTime
swarm/SwarmEnvironment/Getters
-- 403

-getControlStateQuit
swarm/SwarmEnvironment/Getters
-- 403

-getControlStateRunning
swarm/SwarmEnvironment/Getters
-- 403

-getControlStateStepping
swarm/SwarmEnvironment/Getters
-- 403

-getControlStateStopped
swarm/SwarmEnvironment/Getters
-- 403

-getControllingActivity
activity/Activity/Using -- 160

-getCount
objectbase/ProbeMap/Using -- 209
defobj/HDF5/Using -- 63
collections/String/Using -- 131
collections/Collection/Using -- 103
analysis/EZBin/Using -- 371
analysis/Averager/Using -- 368

-getCurrentCount
random/ProbabilityDistribution/Usi
ng -- 256
random/SimpleGenerator/Using --
260

-getCurrentCount:
random/SplitGenerator/Using --
263

-getCurrentMember
activity/ForEachActivity/Using --
170

Method Index

426

-getCurrentSegment:
random/SplitGenerator/Using --
263

-getCurrentSubactivity
activity/Activity/Using -- 160

-getCurrentSwarmActivity
swarm/SwarmEnvironment/Using -
- 403

-getCurrentTime
swarm/SwarmEnvironment/Using -
- 403
activity/ScheduleActivity/Using --
175

-getCurrentValue
analysis/ActiveOutFile/Using --
366
analysis/ActiveGraph/Using -- 365
analysis/EZSequence/Using -- 377

-getData
collections/ArchiverArray/Using --
92

-getDataPath
defobj/Arguments/Using -- 42

-getDatasetDimension:
defobj/HDF5/Using -- 63

-getDatasetFlag
defobj/HDF5/Using -- 63

-getDatasetRank
defobj/HDF5/Using -- 63

-getDatasetType
defobj/HDF5/Using -- 63

-getDefaultMember
collections/DefaultMember/Using -
- 105

-getDefaultOrder
activity/DefaultOrder/Using -- 167

-getDefiningClass
defobj/CreatedClass/Using -- 48

-getDestroyedFlag
gui/Widget/Using -- 355

-getDims
objectbase/VarProbe/Using -- 214
collections/ArchiverArray/Using --
92

-getDisplayName
defobj/DefinedObject/Using -- 53

-getDisplayPrecision
objectbase/ProbeLibrary/Using --
206

-getDistribution
analysis/EZBin/Using -- 371

-getDouble
collections/ArchiverValue/Using --
98

-getDouble:
simtools/InFile [Deprecated]/Using
-- 280

-getDoubleMax
random/UniformDoubleDist/Using
-- 267

-getDoubleMin
random/UniformDoubleDist/Using
-- 267

-getDoubleSample
random/DoubleDistribution/Using -
- 234
random/SimpleGenerator/Using --
260

-getDoubleSample:
random/SplitGenerator/Using --
263

-getDoubleWithMin:withMax:
random/UniformDoubleDist/Using
-- 267

-getDropImmediatelyFlag
simtoolsgui/ProbeDisplayManager/
Using -- 309

-getElementCount
collections/ArchiverArray/Using --
92

-getElementSize
collections/ArchiverArray/Using --
92

-getEnd
swarm/SwarmEnvironment/Getters
-- 403

-getEntropy
analysis/EZDistribution/Using --
372
analysis/Entropy/Using -- 378

-getExecutablePath
defobj/Arguments/Using -- 42

-getExpr
collections/InputStream/Using --
113
collections/OutputStream/Using --
127

Method Index

427

-getFileName
analysis/EZGraph/Using -- 376
analysis/EZBin/Using -- 371

-getFileStream
collections/InputStream/Using --
113
collections/OutputStream/Using --
127

-getFirst
collections/Offsets/Using -- 123

-getFixedSeed
defobj/Arguments/Using -- 42

-getFixedSeedFlag
defobj/Arguments/Using -- 42

-getFloat
collections/ArchiverValue/Using --
98

-getFloat:
simtools/InFile [Deprecated]/Using
-- 280

-getFloatSample
random/SimpleGenerator/Using --
260

-getFloatSample:
random/SplitGenerator/Using --
263

-getFunctionPointer
defobj/FCall/Using -- 59
activity/ActionCall/Using -- 145

-getGenerator
random/ProbabilityDistribution/Usi
ng -- 256

-getGlobalZone
swarm/SwarmEnvironment/Getters
-- 403

-getGraph
analysis/EZGraph/Using -- 376

-getGuiFlag
swarm/SwarmEnvironment/Getters
-- 403

-getHDF5Name
defobj/HDF5/Using -- 63

-getHdf5AppArchiver
swarm/SwarmEnvironment/Getters
-- 403

-getHdf5Archiver
swarm/SwarmEnvironment/Getters
-- 403

-getHeight
gui/Pixmap/Using -- 344
gui/WindowGeometryRecord/Usin
g -- 356
gui/Widget/Using -- 355

-getHideResult
objectbase/MessageProbe/Using --
202

-getHistogram
analysis/EZBin/Using -- 371

-getHoldType
activity/ActivityIndex/Using -- 160
activity/Activity/Using -- 160

-getHolding
swarm/SwarmEnvironment/Getters
-- 403

-getInhibitArchiverLoadFlag
defobj/Arguments/Using -- 42

-getInitialSeed
random/CommonGenerator/Using -
- 234

-getInitialSeeds
random/CommonGenerator/Using -
- 234

-getInitialized
swarm/SwarmEnvironment/Getters
-- 403

-getInt:
simtools/InFile [Deprecated]/Using
-- 280

-getInteger
collections/ArchiverValue/Using --
98

-getIntegerMax
random/UniformIntegerDist/Using
-- 269

-getIntegerMin
random/UniformIntegerDist/Using
-- 269

-getIntegerSample
random/IntegerDistribution/Using -
- 237
random/BooleanDistribution/Using
-- 228

-getIntegerWithMin:withMax:
random/UniformIntegerDist/Using
-- 269

-getInteractiveFlag
objectbase/VarProbe/Using -- 214

Method Index

428

-getInternalZone
activity/SwarmProcess/Using --
178

-getInterval
random/PoissonDist/Using -- 254

-getItem
collections/PermutationItem/Using
-- 128

-getKey
collections/MapIndex/Using -- 120

-getKeyValue
collections/MapIndex/Using -- 120

-getKeywordName
collections/ArchiverKeyword/Usin
g -- 93

-getLanguage
defobj/FArguments/Using -- 58

-getLanguageCOM
swarm/SwarmEnvironment/Getters
-- 403

-getLanguageJava
swarm/SwarmEnvironment/Getters
-- 403

-getLanguageObjc
swarm/SwarmEnvironment/Getters
-- 403

-getLast
collections/Offsets/Using -- 123

-getLastArgIndex
defobj/Arguments/Using -- 42

-getLattice
space/GridData/Using -- 394

-getLine:
simtools/InFile [Deprecated]/Using
-- 280

-getLispAppArchiver
swarm/SwarmEnvironment/Getters
-- 403

-getLispArchiver
swarm/SwarmEnvironment/Getters
-- 403

-getLoc
collections/Index/Using -- 111

-getLong:
simtools/InFile [Deprecated]/Using
-- 280

-getLongDouble
collections/ArchiverValue/Using --
98

-getLongDoubleSample
random/SimpleGenerator/Using --
260

-getLongDoubleSample:
random/SplitGenerator/Using --
263

-getLongLong
collections/ArchiverValue/Using --
98

-getLowerBound
analysis/EZBin/Using -- 371

-getMagic
random/InternalState/Using -- 238

-getMarkedForDropFlag
simtoolsgui/CommonProbeDisplay/
Using -- 298

-getMax
analysis/EZBin/Using -- 371

-getMaxSeedValue
random/CommonGenerator/Using -
- 234

-getMaxSeedValues
random/CommonGenerator/Using -
- 234

-getMean
random/ExponentialDist/Using --
235
random/Normal/Using -- 246

-getMember
swarm/SwarmEnvironment/Getters
-- 403

-getMemberBlock
collections/MemberBlock/Using --
122

-getMessageSelector
activity/ActionSelector/Using --
154

-getMessageString
defobj/Warning/Using -- 74

-getMin
analysis/EZBin/Using -- 371
analysis/Averager/Using -- 368

-getMovingAverage
analysis/Averager/Using -- 368

-getMovingStdDev
analysis/Averager/Using -- 368

-getMovingVariance
analysis/Averager/Using -- 368

Method Index

429

-getNArgs
activity/ActionArgs/Using -- 144

-getName
defobj/GetName/Using -- 60

-getNewLattice
space/DblBuffer2d/Using -- 388

-getNewName
simtools/UName/Using -- 290

-getNewNameObject
simtools/UName/Using -- 290

-getNextPhase
defobj/BehaviorPhase/Using -- 44

-getNumGenerators
random/SplitGenerator/Using --
263

-getNumSegments
random/SplitGenerator/Using --
263

-getNumTrials
random/BinomialDist/Using -- 228

-getObject
collections/ArchiverValue/Using --
98

-getObject:
defobj/Archiver/Using -- 39

-getObjectAtX:Y:
space/GridData/Using -- 394

-getObjectToNotify
objectbase/ProbeConfig/Using --
204

-getOccurRate
random/PoissonDist/Using -- 254

-getOffset
collections/Index/Using -- 111

-getOffsets
space/GridData/Using -- 394

-getOptionsInitialized
random/ProbabilityDistribution/Usi
ng -- 256

-getOutliers
analysis/EZBin/Using -- 371

-getOwner
defobj/GetOwner/Using -- 61

-getOwnerActivity
activity/Activity/Using -- 160

-getPageSize
defobj/Zone/Using -- 78

-getPanel
simtoolsgui/ActionCache/Using --
298

-getParent
gui/Widget/Using -- 355

-getPopulation
defobj/Zone/Using -- 78

-getPosition
collections/PermutationItem/Using
-- 128

-getPositionFlag
gui/WindowGeometryRecord/Usin
g -- 356

-getProbabilities
analysis/EZDistribution/Using --
372

-getProbability
random/BinomialDist/Using -- 228
random/BernoulliDist/Using -- 226

-getProbeDisplayManager
swarm/SwarmEnvironment/Getters
-- 403

-getProbeForMessage:
objectbase/SwarmObject/Using --
211

-getProbeForMessage:inClass:
objectbase/ProbeLibrary/Using --
206

-getProbeForMessage:inObject:
objectbase/ProbeLibrary/Using --
206

-getProbeForVariable:
objectbase/Swarm/Using -- 210
objectbase/SwarmObject/Using --
211

-getProbeForVariable:inClass:
objectbase/ProbeLibrary/Using --
206

-getProbeForVariable:inObject:
objectbase/ProbeLibrary/Using --
206

-getProbeLibrary
swarm/SwarmEnvironment/Getters
-- 403

-getProbeMap
objectbase/Swarm/Using -- 210
objectbase/SwarmObject/Using --
211

Method Index

430

-getProbeMapFor:
objectbase/ProbeLibrary/Using --
206

-getProbeMapForObject:
objectbase/ProbeLibrary/Using --
206

-getProbedClass
objectbase/ProbeMap/Using -- 209
objectbase/Probe/Using -- 204

-getProbedMessage
objectbase/MessageProbe/Using --
202

-getProbedObject
simtoolsgui/SingleProbeDisplay/Us
ing -- 310

-getProbedType
objectbase/Probe/Using -- 204

-getProbedVariable
objectbase/VarProbe/Using -- 214

-getPrototype
defobj/HDF5CompoundType/Usin
g -- 65

-getQuotedObject
collections/ArchiverQuoted/Using -
- 96

-getRandomGenerator
swarm/SwarmEnvironment/Getters
-- 403

-getRandomized
swarm/SwarmEnvironment/Getters
-- 403

-getRank
objectbase/VarProbe/Using -- 214
collections/ArchiverArray/Using --
92

-getRelativeTime
activity/RelativeTime/Using -- 171

-getReleased
swarm/SwarmEnvironment/Getters
-- 403

-getRepeatInterval
activity/RepeatInterval/Using --
172

-getReplaceOnly
collections/Collection/Using -- 103

-getResult
defobj/FCall/Using -- 59
defobj/FArguments/Using -- 58

-getRetVal
defobj/FArguments/Using -- 58

-getRetVal:buf:
defobj/FCall/Using -- 59

-getRunning
swarm/SwarmEnvironment/Getters
-- 403

-getSampleWithAlpha:withBeta:
random/GammaDist/Using -- 236

-getSampleWithMean:
random/ExponentialDist/Using --
235

-getSampleWithMean:withStdDev:
random/Normal/Using -- 246

-getSampleWithMean:withVariance:
random/Normal/Using -- 246

-getSampleWithProbability:
random/BernoulliDist/Using -- 226

-getSavedPrecision
objectbase/ProbeLibrary/Using --
206

-getScheduleActivity
activity/Activity/Using -- 160

-getScratchZone
swarm/SwarmEnvironment/Getters
-- 403

-getSegmentLength
random/SplitGenerator/Using --
263

-getSequential
swarm/SwarmEnvironment/Getters
-- 403

-getSerialMode
activity/Activity/Using -- 160

-getShowCurrentTimeFlag
defobj/Arguments/Using -- 42

-getSingletonGroups
activity/SingletonGroups/Using --
176

-getSizeFlag
gui/WindowGeometryRecord/Usin
g -- 356

-getSizeX
space/GridData/Using -- 394

-getSizeY
space/GridData/Using -- 394

-getStart
swarm/SwarmEnvironment/Getters
-- 403

Method Index

431

-getState
simtoolsgui/ControlPanel/Using --
301

-getStateSize
random/InternalState/Using -- 238

-getStatus
objectbase/ActivityControl/Using -
- 197
activity/Activity/Using -- 160

-getStdDev
random/Normal/Using -- 246
analysis/EZBin/Using -- 371
analysis/Averager/Using -- 368

-getStopped
swarm/SwarmEnvironment/Getters
-- 403

-getSubactivities
activity/Activity/Using -- 160

-getSwarm
activity/SwarmActivity/Using --
177

-getSwarmActivity
activity/Activity/Using -- 160

-getSwarmHome
defobj/Arguments/Using -- 42

-getSynchronizationSchedule
activity/SwarmActivity/Using --
177

-getSynchronizationType
activity/SynchronizationType/Usin
g -- 179

-getTarget
activity/ActionTarget/Using -- 154

-getTerminated
swarm/SwarmEnvironment/Getters
-- 403

-getThinDoubleSample
random/SimpleGenerator/Using --
260

-getThinDoubleSample:
random/SplitGenerator/Using --
263

-getTitle
analysis/EZGraph/Using -- 376
analysis/EZBin/Using -- 371

-getTopLevel
simtoolsgui/CommonProbeDisplay/
Using -- 298
gui/Widget/Using -- 355

-getTopLevelActivity
activity/Activity/Using -- 160

-getTotal
analysis/Averager/Using -- 368

-getTypeName
defobj/DefinedObject/Using -- 53

-getUniformDblRand
swarm/SwarmEnvironment/Getters
-- 403

-getUniformIntRand
swarm/SwarmEnvironment/Getters
-- 403

-getUnsigned
collections/ArchiverValue/Using --
98

-getUnsigned:
simtools/InFile [Deprecated]/Using
-- 280

-getUnsignedLong:
simtools/InFile [Deprecated]/Using
-- 280

-getUnsignedMax
random/UniformUnsignedDist/Usi
ng -- 270
random/CommonGenerator/Using -
- 234

-getUnsignedMin
random/UniformUnsignedDist/Usi
ng -- 270

-getUnsignedSample
random/BinomialDist/Using -- 228
random/UnsignedDistribution/Usin
g -- 271
random/SimpleGenerator/Using --
260

-getUnsignedSample:
random/SplitGenerator/Using --
263

-getUnsignedSampleWithInterval:
random/PoissonDist/Using -- 254

-getUnsignedSampleWithNumTrials:withProbability:
random/BinomialDist/Using -- 228

-getUnsignedSampleWithOccurRate:withInterval:
random/PoissonDist/Using -- 254

-getUnsignedSampleWithProbability:
random/BinomialDist/Using -- 228

-getUnsignedWithMin:withMax:
random/UniformUnsignedDist/Usi
ng -- 270

Method Index

432

-getUpperBound
analysis/EZBin/Using -- 371

-getValue
gui/InputWidget/Using -- 338

-getValueAtX:Y:
space/GridData/Using -- 394

-getValueType
collections/ArchiverValue/Using --
98

-getVarProbe
gui/VarProbeEntry/Using -- 352

-getVariance
random/Normal/Using -- 246
analysis/Averager/Using -- 368

-getVarySeedFlag
defobj/Arguments/Using -- 42

-getVerboseFlag
defobj/Arguments/Using -- 42

-getVirtualGenerator
random/ProbabilityDistribution/Usi
ng -- 256

-getWidgetName
gui/Widget/Using -- 355

-getWidth
gui/Pixmap/Using -- 344
gui/WindowGeometryRecord/Usin
g -- 356
gui/Widget/Using -- 355

-getWindowGeometry
gui/Widget/Using -- 355

-getWithZone:key:
defobj/Archiver/Using -- 39

-getWord:
simtools/InFile [Deprecated]/Using
-- 280

-getWriteFlag
defobj/HDF5/Using -- 63

-getX
gui/NodeItem/Using -- 343
gui/WindowGeometryRecord/Usin
g -- 356
gui/Widget/Using -- 355

-getY
gui/NodeItem/Using -- 343
gui/WindowGeometryRecord/Usin
g -- 356
gui/Widget/Using -- 355

-getZone
defobj/DefinedObject/Using -- 53

-getZoomFactor
gui/ZoomRaster/Using -- 357

-go
simtoolsgui/GUISwarm/Using --
303

-graph
analysis/FunctionGraph/Using --
380

-handleConfigureWidth:Height:
gui/ZoomRaster/Using -- 357

-hdf5In:
defobj/Serialization/Setting -- 72

-hdf5InCreate:
defobj/Serialization/Creating -- 72
defobj/CreatedClass/Creating -- 48

-hdf5OutDeep:
defobj/Serialization/Using -- 72

-hdf5OutShallow:
defobj/Serialization/Using -- 72
defobj/CreatedClass/Creating -- 48

-hideLegend
gui/Histogram/Using -- 337

-increaseZoom
gui/ZoomRaster/Using -- 357

-initAll
random/SplitGenerator/Setting --
263

-initGenerator:
random/SplitGenerator/Setting --
263

-initSwarmUsing:version:bugAddress:args:
swarm/SwarmEnvironment/Using -
- 403

-initializeLattice
space/Diffuse2d/Creating -- 389
space/ConwayLife2d/Creating --
387
space/Ca2d/Creating -- 386

-initiateMoveX:Y:
gui/CanvasAbstractItem/Using --
325

-insertAction:
simtoolsgui/ActionCache/Using --
298

-insertGroup:
activity/Schedule/Using -- 175

-isArgumentId:
objectbase/MessageProbe/Using --
202

Method Index

433

-isProbeMapDefinedFor:
objectbase/ProbeLibrary/Using --
206

-isProbeMapDefinedForObject:
objectbase/ProbeLibrary/Using --
206

-isResultId
objectbase/MessageProbe/Using --
202

-iterate:
defobj/HDF5/Using -- 63

-iterate:drop:
defobj/HDF5/Using -- 63

-iterateAsDouble:using:
objectbase/VarProbe/Using -- 214

-iterateAsInteger:using:
objectbase/VarProbe/Using -- 214

-iterateAttributes:
defobj/HDF5/Using -- 63

-jumpAllToSegment:
random/SplitGenerator/Using --
263

-jumpGenerator:toSegment:
random/SplitGenerator/Using --
263

-lengthOfSeedVector
random/CommonGenerator/Using -
- 234

-lineX0:Y0:X1:Y1:Width:Color:
gui/Raster/Using -- 347

-linkVariableBoolean:
gui/InputWidget/Using -- 338

-linkVariableDouble:
gui/InputWidget/Using -- 338

-linkVariableInt:
gui/InputWidget/Using -- 338

-lispIn:
defobj/Serialization/Setting -- 72

-lispInCreate:
defobj/Serialization/Creating -- 72
defobj/CreatedClass/Creating -- 48

-lispOutDeep:
defobj/Serialization/Using -- 72
collections/ArchiverQuoted/Using -
- 96
collections/ArchiverList/Using --
94
collections/ArchiverPair/Using --
95
collections/ArchiverValue/Using --
98
collections/ArchiverArray/Using --
92
collections/ArchiverKeyword/Usin
g -- 93

-lispOutShallow:
defobj/Serialization/Using -- 72
defobj/CreatedClass/Creating -- 48
collections/ArchiverList/Using --
94
collections/ArchiverPair/Using --
95
collections/ArchiverValue/Using --
98
collections/ArchiverArray/Using --
92
collections/ArchiverKeyword/Usin
g -- 93

-lispOutVars:deep:
defobj/Serialization/Using -- 72

-lispSaveStream:Boolean:Value:
defobj/Serialization/Using -- 72

-lispSaveStream:Char:Value:
defobj/Serialization/Using -- 72

-lispSaveStream:Double:Value:
defobj/Serialization/Using -- 72

-lispSaveStream:Float:Value:
defobj/Serialization/Using -- 72

-lispSaveStream:Integer:Value:
defobj/Serialization/Using -- 72

-lispSaveStream:Long:Value:
defobj/Serialization/Using -- 72

-lispSaveStream:LongLong:Value:
defobj/Serialization/Using -- 72

-lispSaveStream:Short:Value:
defobj/Serialization/Using -- 72

-lispSaveStream:Unsigned:Value:
defobj/Serialization/Using -- 72

-lispSaveStream:UnsignedLong:Value:
defobj/Serialization/Using -- 72

Method Index

434

-lispSaveStream:UnsignedLongLong:Value:
defobj/Serialization/Using -- 72

-lispSaveStream:UnsignedShort:Value:
defobj/Serialization/Using -- 72

-
lispStoreBooleanArray:Keyword:Rank:Dims:Stream:

defobj/Serialization/Using -- 72
-lispStoreCharArray:Keyword:Rank:Dims:Stream:

defobj/Serialization/Using -- 72
-lispStoreDoubleArray:Keyword:Rank:Dims:Stream:

defobj/Serialization/Using -- 72
-lispStoreFloatArray:Keyword:Rank:Dims:Stream:

defobj/Serialization/Using -- 72
-lispStoreIntegerArray:Keyword:Rank:Dims:Stream:

defobj/Serialization/Using -- 72
-lispStoreLongArray:Keyword:Rank:Dims:Stream:

defobj/Serialization/Using -- 72
-
lispStoreLongLongArray:Keyword:Rank:Dims:Strea
m:

defobj/Serialization/Using -- 72
-lispStoreShortArray:Keyword:Rank:Dims:Stream:

defobj/Serialization/Using -- 72
-
lispStoreUnsignedArray:Keyword:Rank:Dims:Strea
m:

defobj/Serialization/Using -- 72
-
lispStoreUnsignedLongArray:Keyword:Rank:Dims:S
tream:

defobj/Serialization/Using -- 72
-
lispStoreUnsignedLongLongArray:Keyword:Rank:D
ims:Stream:

defobj/Serialization/Using -- 72
-listBegin:

collections/List/Using -- 116
-loadDataset:

defobj/HDF5/Using -- 63
-loadObject:

simtools/ObjectLoader
[Deprecated]/Using -- 283

-loadWindowGeometryRecord
gui/ArchivedGeometryWidget/Crea
ting -- 321

-longDynamicCallOn:
objectbase/MessageProbe/Using --
202

-makeOffsets
space/Discrete2d/Creating -- 391

-makeProbeAtX:Y:
space/Object2dDisplay/Using --
396

-makeWidgetNameFor:
gui/Widget/Creating -- 355

-map
gui/Colormap/Using -- 329

-mapBegin:
collections/Map/Using -- 119

-moveX:Y:
gui/CompositeItem/Using -- 330

-nameRecord:name:
defobj/HDF5/Using -- 63

-next
collections/Index/Using -- 111

-next:
collections/MapIndex/Using -- 120

-nextAction
objectbase/ActivityControl/Using -
- 197
activity/Activity/Using -- 160

-nextAction:
activity/ActivityIndex/Using -- 160

-numberRecord:
defobj/HDF5/Using -- 63

-objectDynamicCallOn:
objectbase/MessageProbe/Using --
202

-output
analysis/EZDistribution/Using --
372
analysis/EZBin/Using -- 371

-outputGraph
analysis/EZGraph/Using -- 376
analysis/EZBin/Using -- 371

-outputToFile
analysis/EZGraph/Using -- 376
analysis/EZBin/Using -- 371

-pack
simtoolsgui/MultiVarProbeWidget/
Using -- 306
simtoolsgui/MessageProbeWidget/
Using -- 304
gui/Widget/Using -- 355

-packBeforeAndFillLeft:expand:
gui/Widget/Using -- 355

-packFill
gui/Widget/Using -- 355

Method Index

435

-packFillLeft:
gui/Widget/Using -- 355

-packForgetAndExpand
gui/Widget/Using -- 355

-packToRight:
gui/Widget/Using -- 355

-parseKey:arg:
defobj/Arguments/Creating -- 42

-perform:
defobj/DefinedObject/Using -- 53

-perform:with:
defobj/DefinedObject/Using -- 53

-perform:with:with:
defobj/DefinedObject/Using -- 53

-perform:with:with:with:
defobj/DefinedObject/Using -- 53

-performCall
defobj/FCall/Using -- 59

-prev
collections/Index/Using -- 111

-prev:
collections/MapIndex/Using -- 120

-probeAsDouble:
objectbase/VarProbe/Using -- 214

-probeAsInt:
objectbase/VarProbe/Using -- 214

-probeAsPointer:
objectbase/VarProbe/Using -- 214

-probeAsString:
objectbase/VarProbe/Using -- 214

-probeAsString:Buffer:
objectbase/VarProbe/Using -- 214

-probeAsString:Buffer:withFullPrecision:
objectbase/VarProbe/Using -- 214

-probeObject:
objectbase/VarProbe/Using -- 214

-probeRaw:
objectbase/VarProbe/Using -- 214

-put:
collections/Index/Using -- 111

-putChar:
simtools/OutFile
[Deprecated]/Using -- 287

-putDeep:object:
defobj/Archiver/Using -- 39

-putDouble:
simtools/OutFile
[Deprecated]/Using -- 287

-putFloat:
simtools/OutFile
[Deprecated]/Using -- 287

-putInt:
simtools/OutFile
[Deprecated]/Using -- 287

-putLong:
simtools/OutFile
[Deprecated]/Using -- 287

-putNewLine
simtools/OutFile
[Deprecated]/Using -- 287

-putObject:atX:Y:
space/Grid2d/Using -- 393
space/DblBuffer2d/Using -- 388
space/Discrete2d/Using -- 391

-putShallow:object:
defobj/Archiver/Using -- 39

-putStateInto:
random/InternalState/Using -- 238

-putString:
simtools/OutFile
[Deprecated]/Using -- 287

-putTab
simtools/OutFile
[Deprecated]/Using -- 287

-putUnsigned:
simtools/OutFile
[Deprecated]/Using -- 287

-putUnsignedLong:
simtools/OutFile
[Deprecated]/Using -- 287

-putValue:atX:Y:
space/DblBuffer2d/Using -- 388
space/Discrete2d/Using -- 391

-raiseEvent
defobj/EventType/Using -- 56

-raiseEvent::
defobj/EventType/Using -- 56

-readRowNames
defobj/HDF5/Using -- 63

-rectangleX0:Y0:X1:Y1:Width:Color:
gui/Raster/Using -- 347

-registerAndLoad
gui/ArchivedGeometryWidget/Crea
ting -- 321

-registerClient:
defobj/Archiver/Using -- 39

Method Index

436

-remove
collections/Index/Using -- 111

-remove:
collections/Collection/Using -- 103
activity/ActivationOrder/Using --
157
activity/Schedule/Using -- 175

-removeAll
collections/Collection/Using -- 103

-removeFirst
collections/List/Using -- 116

-removeKey:
collections/KeyedCollection/Using
-- 115

-removeLast
collections/List/Using -- 116

-removeProbeDisplay:
simtoolsgui/ProbeDisplayManager/
Using -- 309

-removeRef:
defobj/DefinedObject/Using -- 53

-removeWidget:
gui/Canvas/Using -- 324

-replace:
collections/Set/Using -- 130

-reset
random/ProbabilityDistribution/Set
ting -- 256
random/CommonGenerator/Using -
- 234
analysis/EZBin/Using -- 371

-resetCounter
simtools/UName/Using -- 290

-resetData
gui/GraphElement/Using -- 335

-resetString:
gui/NodeItem/Using -- 343

-reshuffle
collections/PermutedIndex/Using --
129

-respondsTo:
defobj/DefinedObject/Using -- 53

-restartAll
random/SplitGenerator/Using --
263

-restartGenerator:
random/SplitGenerator/Using --
263

-run
activity/Activity/Using -- 160

-runActivity
objectbase/ActivityControl/Using -
- 197

-save:
gui/Pixmap/Using -- 344

-saveObject:
simtools/ObjectSaver
[Deprecated]/Using -- 285

-selectRecord:
defobj/HDF5/Using -- 63

-sendActionOfType:toExecute:
simtoolsgui/ActionCache/Using --
298

-sendNextAction
simtoolsgui/ActionCache/Using --
298

-sendQuitAction
simtoolsgui/ActionCache/Using --
298

-sendStartAction
simtoolsgui/ActionCache/Using --
298

-sendStepAction
simtoolsgui/ActionCache/Using --
298

-sendStopAction
simtoolsgui/ActionCache/Using --
298

-setActiveFlag:
gui/Widget/Using -- 355

-setActiveOutlierText:count:
gui/Histogram/Using -- 337

-setAlpha:setBeta:
random/GammaDist/Setting -- 236

-setAntithetic:
random/CommonGenerator/Setting
-- 234

-setAppModeString:
defobj/Arguments/Creating -- 42

-setAppName:
defobj/Arguments/Creating -- 42

-setArg1:
activity/ActionArgs/Creating -- 144

-setArg2:
activity/ActionArgs/Creating -- 144

-setArg3:
activity/ActionArgs/Creating -- 144

Method Index

437

-setArg:
gui/MessageProbeEntry/Creating --
341

-setArg:ToString:
objectbase/MessageProbe/Using --
202

-setArg:ToUnsigned:
objectbase/MessageProbe/Using --
202

-setArgc:Argv:
defobj/Arguments/Creating -- 42

-setArguments:
swarm/SwarmEnvironment/Creatin
g -- 403
defobj/FCall/Creating -- 59

-setArithmeticWarn:
analysis/FunctionGraph/Creating --
380

-setArray:
collections/ArchiverArray/Creating
-- 92

-setAutoDrop:
activity/AutoDrop/Creating -- 161
activity/FAction/Setting -- 167

-setAxisLabelsX:Y:
gui/Histogram/Using -- 337
gui/Graph/Using -- 334
analysis/EZGraph/Creating -- 376
analysis/EZBin/Creating -- 371

-setBackground:
space/Int2dFiler/Using -- 395

-setBarWidth:
gui/Histogram/Using -- 337

-setBaseName:
simtools/UName/Creating -- 290

-setBaseNameObject:
simtools/UName/Creating -- 290

-setBaseTypeObject:
defobj/HDF5/Setting -- 63

-setBatchMode:
swarm/SwarmEnvironment/Creatin
g -- 403

-setBatchModeFlag:
defobj/Arguments/Setting -- 42

-setBinCount:
gui/Histogram/Creating -- 337
analysis/EZBin/Creating -- 371

-setBoolValue:
gui/CheckButton/Using -- 326

-setBoolean:
collections/ArchiverValue/Creating
-- 98

-setBooleanReturnType
defobj/FArguments/Creating -- 58

-setBorderColor:
gui/NodeItem/Using -- 343

-setBorderWidth:
gui/NodeItem/Using -- 343
gui/Frame/Creating -- 333

-setBugAddress:
defobj/Arguments/Creating -- 42

-setButton:Client:Message:
gui/Raster/Using -- 347

-setButtonTarget:
gui/ButtonPanel/Using -- 323

-setButtonTarget:method:
gui/Button/Using -- 322

-setC:
collections/String/Setting -- 131

-setCall:
activity/FAction/Creating -- 167

-setCanvas:
gui/CanvasAbstractItem/Creating --
325

-setCar:
collections/ArchiverPair/Creating -
- 95

-setCdr:
collections/ArchiverPair/Creating -
- 95

-setCenterFlag:
gui/TextItem/Creating -- 351

-setChar:
collections/ArchiverValue/Creating
-- 98

-setClass:
defobj/CreatedClass/Creating -- 48
collections/ArchiverValue/Creating
-- 98

-setClickSel:
gui/CanvasAbstractItem/Using --
325

Method Index

438

-setCollection:
collections/Permutation/Creating --
127
collections/PermutedIndex/Creatin
g -- 129
analysis/EZBin/Creating -- 371
analysis/Entropy/Creating -- 378
analysis/Averager/Creating -- 368

-setColor:
gui/LinkItem/Using -- 340
gui/NodeItem/Using -- 343
gui/GraphElement/Using -- 335

-setColor:ToGrey:
gui/Colormap/Using -- 329

-setColor:ToName:
gui/Colormap/Using -- 329

-setColor:ToRed:Green:Blue:
gui/Colormap/Using -- 329

-setColormap:
gui/Raster/Using -- 347

-setColors:count:
gui/Histogram/Using -- 337
analysis/EZGraph/Creating -- 376
analysis/EZBin/Creating -- 371

-setCompareCStrings
collections/CompareFunction/Creat
ing -- 104

-setCompareFunction:
collections/CompareFunction/Creat
ing -- 104

-setCompareIDs
collections/CompareFunction/Creat
ing -- 104

-setCompareIntegers
collections/CompareFunction/Creat
ing -- 104

-setCompareUnsignedIntegers
collections/CompareFunction/Creat
ing -- 104

-setComponentWindowGeometryRecordName:name:
swarm/SwarmEnvironment/Using -
- 403

-
setComponentWindowGeometryRecordNameFor:wi
dget:name:

swarm/SwarmEnvironment/Using -
- 403

-setCompoundType:
defobj/HDF5/Creating -- 63

-setConcurrentGroupType:
activity/ConcurrentGroupType/Sett
ing -- 164

-setConsFormatFlag:
collections/ArchiverPair/Creating -
- 95

-setControlPanel:
simtoolsgui/ActionCache/Creating
-- 298

-setCount:
defobj/HDF5/Creating -- 63
collections/Array/Setting -- 100

-setDashes:
gui/GraphElement/Using -- 335

-setData:To:
objectbase/VarProbe/Using -- 214

-setData:ToDouble:
objectbase/VarProbe/Using -- 214

-setData:ToString:
objectbase/VarProbe/Using -- 214

-setDataFeed:
analysis/FunctionGraph/Creating --
380
analysis/ActiveOutFile/Creating --
366
analysis/ActiveGraph/Creating --
365

-setDatasetFlag:
defobj/HDF5/Creating -- 63

-setDecorationsFlag:
gui/Pixmap/Creating -- 344

-setDefaultAppConfigPath:
defobj/Arguments/Setting -- 42

-setDefaultAppDataPath:
defobj/Arguments/Setting -- 42

-setDefaultAppPath
defobj/Archiver/Creating -- 39

-setDefaultMember:
collections/DefaultMember/Setting
-- 105

-setDefaultOrder:
activity/DefaultOrder/Setting -- 167

-setDefaultPath
defobj/Archiver/Creating -- 39

-setDefiningClass:
defobj/CreatedClass/Creating -- 48

-setDiffusionConstant:
space/Diffuse2d/Setting -- 389

Method Index

439

-setDirectedFlag:
gui/LinkItem/Creating -- 340

-setDirectory:
gui/Pixmap/Creating -- 344

-setDiscrete2d:toFile:
space/Discrete2d/Using -- 391

-setDiscrete2dToDisplay:
space/Object2dDisplay/Creating --
396
space/Value2dDisplay/Creating --
397

-setDiscrete2dToFile:
space/Int2dFiler/Using -- 395

-setDisplayMappingM:C:
space/Value2dDisplay/Using -- 397

-setDisplayMessage:
space/Object2dDisplay/Creating --
396

-setDisplayName:
defobj/DefinedObject/Using -- 53

-setDisplayPrecision:
objectbase/ProbeLibrary/Using --
206

-setDisplayWidget:
space/Object2dDisplay/Creating --
396

-setDisplayWidget:colormap:
space/Value2dDisplay/Creating --
397

-setDouble:
collections/ArchiverValue/Creating
-- 98

-setDoubleMin:setMax:
random/UniformDoubleDist/Settin
g -- 267

-setDropImmediatelyFlag:
simtoolsgui/ProbeDisplayManager/
Using -- 309

-setElement:
analysis/FunctionGraph/Creating --
380
analysis/ActiveGraph/Creating --
365

-setEntryWidth:
gui/Form/Using -- 332

-setEvaporationRate:
space/Diffuse2d/Setting -- 389

-setExpr:
collections/InputStream/Creating --
113

-setExprFlag:
collections/OutputStream/Creating
-- 127

-setExtensibleDoubleVector
defobj/HDF5/Creating -- 63

-setExtensibleVectorType:
defobj/HDF5/Creating -- 63

-setFieldLabelingFlag:
simtoolsgui/MultiVarProbeWidget/
Creating -- 306

-setFile:
gui/Pixmap/Creating -- 344

-setFileName:
analysis/EZGraph/Creating -- 376
analysis/EZBin/Creating -- 371

-setFileObject:
simtools/ObjectSaver
[Deprecated]/Setting -- 285
simtools/ObjectLoader
[Deprecated]/Setting -- 283
analysis/ActiveOutFile/Creating --
366

-setFileOutput:
analysis/EZGraph/Creating -- 376
analysis/EZBin/Creating -- 371

-setFileStream:
collections/InputStream/Creating --
113
collections/OutputStream/Creating
-- 127

-setFixedSeed:
defobj/Arguments/Setting -- 42

-setFloat:
collections/ArchiverValue/Creating
-- 98

-setFloatFormat:
objectbase/VarProbe/Setting -- 214

-setFont:
gui/TextItem/Creating -- 351
gui/NodeItem/Creating -- 343

-setFrom:
gui/LinkItem/Creating -- 340

-setFunctionPointer:
defobj/FCall/Creating -- 59
activity/ActionCall/Creating -- 145

Method Index

440

-setFunctionSelector:
analysis/FunctionGraph/Creating --
380

-setGenerator:
random/ProbabilityDistribution/Set
ting -- 256

-setGenerator:setVirtualGenerator:
random/ProbabilityDistribution/Set
ting -- 256

-setGraphics:
analysis/EZGraph/Creating -- 376
analysis/EZBin/Creating -- 371

-setHDF5Container:
analysis/EZGraph/Creating -- 376

-setHDF5Dataset:
analysis/ActiveOutFile/Creating --
366

-setHeight:
gui/Entry/Using -- 331
gui/Widget/Using -- 355

-setHideResult:
objectbase/MessageProbe/Setting --
202

-setHorizontalScrollbarFlag:
gui/ProbeCanvas/Creating -- 345

-setIdFlag:
gui/MessageProbeEntry/Creating --
341

-setIndexFromMemberLoc:
collections/Collection/Creating --
103

-setInhibitArchiverLoadFlag:
defobj/Arguments/Setting -- 42

-setInhibitExecutableSearchFlag:
defobj/Arguments/Setting -- 42

-setInhibitLoadFlag:
defobj/Archiver/Creating -- 39

-setInitialValue:
defobj/SetInitialValue/Creating --
72

-setIntegerMin:setMax:
random/UniformIntegerDist/Setting
-- 269

-setInteractiveFlag:
gui/VarProbeEntry/Creating -- 352

-setInternalZoneType:
activity/SwarmProcess/Creating --
178

-setInterval:
random/PoissonDist/Setting -- 254

-setItem:
collections/PermutationItem/Creati
ng -- 128

-setJavaMethodFromName:inClass:
defobj/FCall/Creating -- 59

-setJavaMethodFromName:inObject:
defobj/FCall/Creating -- 59

-setJavaSignature:
defobj/FArguments/Creating -- 58

-setKeepEmptyFlag:
activity/Schedule/Creating -- 175

-setKey:
collections/MapIndex/Using -- 120

-setKeywordName:
collections/ArchiverKeyword/Creat
ing -- 93

-setLabel:
gui/GraphElement/Using -- 335

-setLabels:count:
gui/Histogram/Using -- 337

-setLanguage:
defobj/FArguments/Creating -- 58

-setLastPermutation:
collections/Permutation/Creating --
127

-setLattice:
space/Discrete2d/Setting -- 391

-setLoc:
collections/Index/Using -- 111

-setLongDouble:
collections/ArchiverValue/Creating
-- 98

-setLongLong:
collections/ArchiverValue/Creating
-- 98

-setLowerBound:
analysis/EZBin/Creating -- 371

-setMean:
random/ExponentialDist/Setting --
235

-setMean:setStdDev:
random/Normal/Setting -- 246

-setMean:setVariance:
random/Normal/Setting -- 246

-setMemberBlock:setCount:
collections/MemberBlock/Setting -
- 122

Method Index

441

-setMessageSelector:
activity/ActionSelector/Setting --
154

-setMessageString:
defobj/Warning/Using -- 74

-setMethodFromName:inObject:
defobj/FCall/Creating -- 59

-setMethodFromSelector:inObject:
defobj/FCall/Creating -- 59

-setMonoColorBars:
analysis/EZBin/Creating -- 371

-setMoveSel:
gui/CanvasAbstractItem/Using --
325

-setName:
defobj/HDF5/Setting -- 63
defobj/CreatedClass/Creating -- 48

-setNextPhase:
defobj/BehaviorPhase/Creating --
44

-setNil
collections/ArchiverValue/Creating
-- 98

-setNonInteractive
objectbase/VarProbe/Setting -- 214

-setNumStates:
space/Ca2d/Creating -- 386

-setNumTrials:
random/BinomialDist/Setting --
228

-setNumTrials:setProbability:
random/BinomialDist/Setting --
228

-setObjCReturnType:
defobj/FArguments/Creating -- 58

-setObject:
simtoolsgui/MessageProbeWidget/
Creating -- 304

-setObjectCollection:
space/Object2dDisplay/Using --
396

-setObjectFlag:
space/Discrete2d/Setting -- 391

-setObjectList:
simtoolsgui/MultiVarProbeWidget/
Creating -- 306
simtoolsgui/MultiVarProbeDisplay/
Creating -- 306

-setObjectNameSelector:
simtoolsgui/MultiVarProbeWidget/
Creating -- 306
simtoolsgui/MultiVarProbeDisplay/
Creating -- 306

-setObjectToNotify:
objectbase/ProbeConfig/Using --
204

-setOccurRate:
random/PoissonDist/Setting -- 254

-setOccurRate:setInterval:
random/PoissonDist/Setting -- 254

-setOffset:
collections/Index/Using -- 111

-setOptionFunc:
defobj/Arguments/Creating -- 42

-setOverwriteWarnings:
space/Grid2d/Using -- 393

-setOwner:
gui/VarProbeEntry/Creating -- 352
gui/SuperButton/Creating -- 350
gui/ClassDisplayHideButton/Creati
ng -- 328

-setOwnerActivity:
activity/Activity/Using -- 160

-setOwnerGraph:
gui/GraphElement/Creating -- 335

-setPageSize:
defobj/Zone/Creating -- 78

-setParent:
simtoolsgui/MultiVarProbeWidget/
Creating -- 306
simtoolsgui/MessageProbeWidget/
Creating -- 304
gui/Widget/Creating -- 355
defobj/HDF5/Creating -- 63

-setPath:
defobj/Archiver/Creating -- 39

-setPosition:
collections/PermutationItem/Creati
ng -- 128

-setPostMoveSel:
gui/CanvasAbstractItem/Using --
325

-setPrecision:
analysis/EZBin/Using -- 371

-setProbability:
random/BernoulliDist/Setting --
226

Method Index

442

-setProbe:
simtoolsgui/MessageProbeWidget/
Creating -- 304

-setProbeDisplay:
gui/SimpleProbeDisplayHideButto
n/Creating -- 350

-setProbeMap:
simtoolsgui/MultiVarProbeWidget/
Creating -- 306
simtoolsgui/MultiVarProbeDisplay/
Creating -- 306
simtoolsgui/ProbeDisplay/Creating
-- 307
simtoolsgui/SimpleProbeDisplay/C
reating -- 309

-setProbeMap:For:
objectbase/ProbeLibrary/Using --
206

-setProbeMap:ForObject:
objectbase/ProbeLibrary/Using --
206

-setProbedClass:
objectbase/ProbeMap/Creating --
209
objectbase/Probe/Creating -- 204

-setProbedMethodName:
objectbase/MessageProbe/Creating
-- 202

-setProbedObject:
simtoolsgui/SingleProbeDisplay/Cr
eating -- 310
objectbase/ProbeMap/Creating --
209
objectbase/Probe/Creating -- 204
gui/CompleteProbeDisplayLabel/C
reating -- 330

-setProbedSelector:
objectbase/MessageProbe/Creating
-- 202
analysis/EZBin/Creating -- 371

-setProbedVariable:
objectbase/VarProbe/Creating --
214

-setPrototype:
defobj/HDF5CompoundType/Creat
ing -- 65

-setQuotedObject:
collections/ArchiverQuoted/Creatin
g -- 96

-setRadius:
gui/Circle/Creating -- 327

-setRangesXMin:Max:
gui/Graph/Using -- 334
analysis/EZGraph/Using -- 376

-setRangesXMin:Max:YMin:Max:
gui/Graph/Using -- 334

-setRangesYMin:Max:
gui/Graph/Using -- 334
analysis/EZGraph/Using -- 376

-setRaster:
gui/Pixmap/Using -- 344

-setRelativeTime:
activity/RelativeTime/Setting --
171

-setReliefFlag:
gui/Frame/Creating -- 333

-setRepeatInterval:
activity/RepeatInterval/Setting --
172

-setReplaceOnly:
collections/Collection/Creating --
103

-setResetFrequency:
analysis/FunctionGraph/Creating --
380

-setReturnType:
defobj/FArguments/Creating -- 58

-setSafety
objectbase/Probe/Setting -- 204

-setSaveSizeFlag:
simtoolsgui/WindowGeometryRec
ordName/Creating -- 311
gui/ArchivedGeometryWidget/Crea
ting -- 321

-setSavedPrecision:
objectbase/ProbeLibrary/Using --
206

-setScaleModeX:Y:
gui/Graph/Using -- 334
analysis/EZGraph/Using -- 376

-setSchedule:
gui/ScheduleItem/Creating -- 349

-setScheduleContext:
simtoolsgui/ActionCache/Using --
298

Method Index

443

-setSelector:
defobj/FArguments/Creating -- 58

-setSerialMode:
activity/Activity/Using -- 160

-setSingletonGroups:
activity/SingletonGroups/Setting --
176

-setSizeX:Y:
space/Discrete2d/Creating -- 391

-setState:
simtoolsgui/ControlPanel/Using --
301

-setStateFrom:
random/InternalState/Using -- 238

-setStateFromSeed:
random/CommonGenerator/Setting
-- 234

-setStateFromSeeds:
random/CommonGenerator/Setting
-- 234

-setStateNextTime
simtoolsgui/ControlPanel/Using --
301

-setStateQuit
simtoolsgui/ControlPanel/Using --
301

-setStateRunning
simtoolsgui/ControlPanel/Using --
301

-setStateSave
simtoolsgui/ControlPanel/Using --
301

-setStateStepping
simtoolsgui/ControlPanel/Using --
301

-setStateStopped
simtoolsgui/ControlPanel/Using --
301

-setStep:
gui/ScheduleItem/Creating -- 349

-setString:
gui/NodeItem/Creating -- 343

-setStringReturnType:
objectbase/VarProbe/Setting -- 214

-setSubWidget:
gui/ClassDisplayHideButton/Creati
ng -- 328

-setSuperWidget:
gui/SuperButton/Creating -- 350

-setSuperclass:
defobj/CreatedClass/Creating -- 48

-setSymbol:
gui/GraphElement/Using -- 335

-setSymbolSize:
gui/GraphElement/Using -- 335

-setSynchronizationType:
activity/SynchronizationType/Creat
ing -- 179

-setSystemArchiverFlag:
defobj/Archiver/Creating -- 39

-setTX:TY:LX:LY:
gui/Line/Creating -- 339
gui/Rectangle/Creating -- 347

-setTarget:
activity/ActionTarget/Creating --
154

-setTargetId:
gui/CanvasAbstractItem/Using --
325

-setTargetWidget:
gui/CompleteProbeDisplayLabel/C
reating -- 330

-setTemplateProbeMap:
simtools/ObjectSaver
[Deprecated]/Setting -- 285
simtools/ObjectLoader
[Deprecated]/Setting -- 283

-setText:
gui/TextItem/Creating -- 351
gui/Button/Using -- 322
gui/Label/Using -- 339

-setTitle:
gui/Histogram/Using -- 337
gui/Graph/Using -- 334
analysis/EZGraph/Creating -- 376
analysis/EZBin/Creating -- 371

-setTo:
gui/LinkItem/Creating -- 340

-setUniformRandom:
collections/Permutation/Creating --
127
collections/ListShuffler/Creating --
118
collections/PermutedIndex/Creatin
g -- 129

-setUnsignedArg:
analysis/EZSequence/Using -- 377

Method Index

444

-setUnsignedMin:setMax:
random/UniformUnsignedDist/Setti
ng -- 270

-setUpperBound:
analysis/EZBin/Creating -- 371

-setUser:
gui/SuperButton/Creating -- 350
gui/ClassDisplayHideButton/Creati
ng -- 328

-setValue:
gui/InputWidget/Using -- 338

-setValueMessage:
space/Int2dFiler/Using -- 395

-setVarProbe:
gui/VarProbeEntry/Creating -- 352

-setVarySeedFlag:
defobj/Arguments/Setting -- 42

-setVerboseFlag:
defobj/Arguments/Setting -- 42

-setVersion:
defobj/Arguments/Creating -- 42

-setWidget:
gui/Pixmap/Creating -- 344

-setWidgetNameFromParent:
gui/Widget/Creating -- 355

-setWidgetNameFromParentName:
gui/Widget/Creating -- 355

-setWidth:
gui/GraphElement/Using -- 335
gui/Widget/Using -- 355
analysis/Averager/Creating -- 368

-setWidth:Height:
gui/WindowGeometryRecord/Usin
g -- 356
gui/Widget/Using -- 355

-setWindowGeometry:
gui/Widget/Using -- 355

-setWindowGeometryRecordName:
simtoolsgui/WindowGeometryRec
ordName/Creating -- 311
gui/ArchivedGeometryWidget/Crea
ting -- 321

-setWindowGeometryRecordName:name:
swarm/SwarmEnvironment/Using -
- 403

-
setWindowGeometryRecordNameForComponent:wi
dget:

simtoolsgui/CompositeWindowGeo
metryRecordName/Creating -- 300

-setWindowTitle:
gui/Widget/Using -- 355

-setWriteFlag:
defobj/HDF5/Creating -- 63

-setX:Y:
gui/Circle/Creating -- 327
gui/TextItem/Creating -- 351
gui/ScheduleItem/Creating -- 349
gui/NodeItem/Creating -- 343
gui/WindowGeometryRecord/Usin
g -- 356
gui/Widget/Using -- 355

-setXMin:Max:Resolution:
analysis/FunctionGraph/Creating --
380

-setXMin:Max:StepSize:
analysis/FunctionGraph/Creating --
380

-setXaxisMin:max:step:
gui/Histogram/Using -- 337

-setXaxisMin:max:step:precision:
gui/Histogram/Using -- 337

-setZoomFactor:
gui/ZoomRaster/Using -- 357

-setupActiveItemInfo
gui/Histogram/Using -- 337

-setupActiveOutlierMarker
gui/Histogram/Using -- 337

-setupZoomStack
gui/Histogram/Using -- 337

-shallowLoadObject:
defobj/HDF5/Using -- 63

-shallowStoreObject:
defobj/HDF5/Using -- 63

-shufflePartialList:Num:
collections/ListShuffler/Using --
118

-shuffleWholeList:
collections/ListShuffler/Using --
118

-skipLine
simtools/InFile [Deprecated]/Using
-- 280

Method Index

445

-startInActivity:
simtoolsgui/ControlPanel/Using --
301

-step
analysis/ActiveOutFile/Using --
366
analysis/ActiveGraph/Using -- 365
analysis/EZGraph/Using -- 376

-stepAction
objectbase/ActivityControl/Using -
- 197
activity/Activity/Using -- 160

-stepRule
space/Diffuse2d/Using -- 389
space/ConwayLife2d/Using -- 387
space/Ca2d/Using -- 386

-stepUntil:
objectbase/ActivityControl/Using -
- 197
activity/ScheduleActivity/Using --
175

-stop
activity/Activity/Using -- 160

-stopActivity
objectbase/ActivityControl/Using -
- 197

-storeAsDataset:typeName:type:rank:dims:ptr:
defobj/HDF5/Using -- 63

-storeAttribute:value:
defobj/HDF5/Using -- 63

-storeComponentTypeName:
defobj/HDF5/Using -- 63

-storeTypeName:
defobj/HDF5/Using -- 63

-stringDynamicCallOn:
objectbase/MessageProbe/Using --
202

-sync
defobj/Archiver/Using -- 39

-terminate
objectbase/ActivityControl/Using -
- 197
activity/Activity/Using -- 160

-trigger:X:Y:
gui/ScheduleItem/Using -- 349

-typeModule:
swarm/SwarmEnvironment/Using -
- 403

-unGetChar:
simtools/InFile [Deprecated]/Using
-- 280

-unregisterClient:
defobj/Archiver/Using -- 39

-unsetColor:
gui/Colormap/Using -- 329

-unsetSafety
objectbase/Probe/Setting -- 204

-update
simtoolsgui/MultiVarProbeWidget/
Using -- 306
simtoolsgui/ProbeDisplayManager/
Using -- 309
simtoolsgui/CommonProbeDisplay/
Using -- 298
gui/ScheduleItem/Using -- 349
gui/LinkItem/Using -- 340
analysis/EZGraph/Using -- 376
analysis/EZDistribution/Using --
372
analysis/EZBin/Using -- 371
analysis/Entropy/Using -- 378
analysis/Averager/Using -- 368

-updateArchiver:
gui/ArchivedGeometryWidget/Usin
g -- 321
defobj/Serialization/Using -- 72
defobj/CreatedClass/Creating -- 48

-updateCache:
simtools/ObjectLoader
[Deprecated]/Using -- 283

-updateDisplay
swarm/SwarmEnvironment/Using -
- 403

-updateLattice
space/DblBuffer2d/Using -- 388

-updateSize
gui/ArchivedGeometryWidget/Crea
ting -- 321

-updateStateVar
objectbase/ActivityControl/Using -
- 197

-verboseMessage:
swarm/SwarmEnvironment/Using -
- 403

-verifyActions
simtoolsgui/ActionCache/Using --
298

Method Index

446

-waitForControlEvent
simtoolsgui/ActionCache/Using --
298

-white
gui/Colormap/Using -- 329

-withdraw
gui/Frame/Using -- 333

-writeLevels
defobj/HDF5/Using -- 63

-writeRowNames
defobj/HDF5/Using -- 63

-xfprint
defobj/DefinedObject/Using -- 53

-xfprint:
swarm/SwarmEnvironment/Using -
- 403

-xfprintid
defobj/DefinedObject/Using -- 53

-xprint
defobj/DefinedObject/Using -- 53

-xprint:
swarm/SwarmEnvironment/Using -
- 403

-xprintid
defobj/DefinedObject/Using -- 53

447

Function Index
__objc_exec_class_for_all_initial_modules -- 290
_activity_context_error -- 181
initSwarm -- 403
_obj_formatIDString -- 80
_obj_initModule -- 80
compareIDs -- 132
compareIntegers -- 132
compareUnsignedIntegers -- 132
defobj_lookup_type -- 80
initDefobj -- 80
initSimtoolsGUI -- 312
initTkObjc -- 359
nameToObject -- 80
objc_get_class -- 80
xexec -- 80
xfexec -- 80
xfprint -- 80
xfprintid -- 80
xprint -- 80
xprintid -- 80
xsetname -- 80
zstrdup -- 80

448

Global Index
ActionTypeNotImplemented -- 312
ArchiverDot -- 132
ArchiverEOL -- 132
ArchiverLiteral -- 132
ArchiverQuote -- 132
CharString -- 214
Completed -- 181
Concurrent -- 181
Control -- 312
ControlStateNextTime -- 312
ControlStateQuit -- 312
ControlStateRunning -- 312
ControlStateStepping -- 312
ControlStateStopped -- 312
DefaultAssumed -- 74
DefaultString -- 214
HoldEnd -- 181
HoldStart -- 181
Holding -- 181
Initialized -- 181
IntString -- 214
InvalidActionType -- 312
InvalidSwarmZone -- 181
LanguageCOM -- 82
LanguageJS -- 82
LanguageJava -- 82
LanguageObjc -- 82
LibraryUsage -- 74
ObsoleteFeature -- 74
ObsoleteMessage -- 74
Probing -- 312
Randomized -- 181
Released -- 181
ResourceAvailability -- 74
Running -- 181
SaveWarning -- 74
Sequential -- 181
Spatial -- 312
Stopped -- 181
Terminated -- 181
WarningMessage -- 74
_activity_current -- 181
_activity_trace -- 181
_activity_zone -- 181
_obj_debug -- 82
_obj_globalZone -- 82
_obj_scratchZone -- 82

_obj_xdebug -- 82
_obj_xerror -- 82
arguments -- 82
hdf5AppArchiver -- 82
hdf5Archiver -- 82
lispAppArchiver -- 82
lispArchiver -- 82
probeDisplayManager -- 312
probeLibrary -- 214
swarmGUIMode -- 403
swarm_version -- 214
t_ByteArray -- 82
t_LeafObject -- 82
t_PopulationObject -- 82

449

Macro Index
ARCHIVERDOTP -- 132
ARCHIVEREOLP -- 132
CREATE_PROBE_DISPLAY -- 309
DEFINED_timeval_t -- 180
GUI_BEEP -- 358
GUI_DRAG_AND_DROP -- 358
GUI_DRAG_AND_DROP_OBJECT -- 358
GUI_EVENT_ASYNC -- 358
GUI_EVENT_SYNC -- 358
GUI_FOCUS -- 358
GUI_INIT -- 358
GUI_MAKE_FRAME -- 358
GUI_PACK -- 358
GUI_RELEASE_AND_UPDATE -- 358
GUI_UPDATE -- 358
GUI_UPDATE_IDLE_TASKS -- 358
GUI_UPDATE_IDLE_TASKS_AND_HOLD -- 358
HOLDINGP -- 180
INITIALIZEDP -- 180
RELEASEDP -- 180
RUNNINGP -- 180
SET_WINDOW_GEOMETRY_RECORD_NAME -
- 311
STOPPEDP -- 180
TERMINATEDP -- 180
__swarm_defobj_h -- 80
defsymbol -- 73
defwarning -- 74
getCurrentAction -- 180
getCurrentActivity -- 180
getCurrentOwnerActivity -- 180
getCurrentSchedule -- 180
getCurrentScheduleActivity -- 180
getCurrentSwarm -- 180
getCurrentSwarmActivity -- 180
getCurrentTime -- 180
getTopLevelActivity -- 180
globalZone -- 80
initModule -- 80
initSwarm -- 290
initSwarmApp -- 290
initSwarmAppArguments -- 290
initSwarmAppBatch -- 290
initSwarmAppOptions -- 290
initSwarmAppOptionsBatch -- 290
initSwarmArguments -- 290
initSwarmBatch -- 290

scratchZone -- 80

450

Typedef Index
Color -- 359
PixelValue -- 359
fcall_type_t -- 81
timeval_t -- 181
types_t -- 81
val_t -- 81

	Revision History
	Table of Contents
	
	
	Revision History

	Table of Contents
	Chapter 1. Mag 1x: Experimental Procedure in a Computer
	Chapter 2. Mag 2x: Basis of Swarm Computation
	Chapter 3. Mag 3x: Swarm Structures
	3.1. Model Swarms
	3.2. Observer Swarms
	3.3. Summary

	Chapter 4. Mag 4x:Sketch of Code
	4.1. Building a Model Swarm
	4.2. Defining an Agent
	4.3. Building Agents
	4.4. Building Space objects
	4.5. Scheduling a Model Swarm
	4.6. Building a Graphical Observer Swarm
	4.7. Building a Data Graph
	4.8. The main() function

	Chapter 5. Conclusion
	
	
	Revision History

	Table of Contents
	
	
	1. Supported Systems
	2. Prerequisite Programs
	3. Prerequisite Libraries
	4. Configuring and Installing Swarm
	5. Compiling Swarm Libraries -- (not required for binary distributions)
	6. Compiling and Running Swarm Applications
	7. Post-compile cleanup
	1. Libraries
	2. Sample applications
	Revision History

	Table of Contents
	List of Examples
	Preface
	
	
	1. The Swarm Hive
	2. Acknowledgments

	Swarm Changes and Compatibility
	1. Porting from 2.0 or 2.0.1 to 2.1
	2. Porting from 1.4 or 1.4.1 to 2.0
	3. Porting from 1.3 or 1.3.1 to 1.4
	4. Porting from 1.2 to 1.3
	5. Porting from 1.1 to 1.2
	5.1. Major changes
	5.2. Porting Guide
	5.3. Porting example: heatbugs
	5.4. Porting example: mousetrap

	6. Porting from 1.0.5 to 1.1
	6.1. Major changes
	6.2. Porting guide
	6.3. Porting example: heatbugs

	7. Porting from 1.0.4 to 1.0.5
	8. Porting from 1.0.3 to 1.0.4
	9. Porting from 1.0.2 to 1.0.3
	10. Porting from 1.0.0 to 1.0.1
	11. Beta to 1.0.0
	1. Dependencies
	2. Compatibility
	3. Usage Guide
	3.1. Why Swarm uses Objective C
	3.2. Swarm style of Objective C Programming

	4. Advanced Usage Guide
	5. Subclassing Reference
	6. Interface Design Notes
	7. Implementation Notes
	
	Revision History

	Archiver
	Name
	Description
	Protocols adopted by Archiver
	Methods
	Phase: Creating
	Phase: Using

	Arguments
	Name
	Description
	Protocols adopted by Arguments
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	Examples

	BehaviorPhase
	Name
	Description
	Protocols adopted by BehaviorPhase
	Methods
	Phase: Creating
	Phase: Using

	CREATABLE
	Name
	Description
	Protocols adopted by CREATABLE
	Methods

	Copy
	Name
	Description
	Protocols adopted by Copy
	Methods
	Phase: Using

	Create
	Name
	Description
	Protocols adopted by Create
	Methods
	Phase: Creating

	Examples

	CreatedClass
	Name
	Description
	Protocols adopted by CreatedClass
	Methods
	Phase: Creating
	Phase: Using

	Customize
	Name
	Description
	Protocols adopted by Customize
	Methods
	Phase: Creating

	Examples

	DefinedClass
	Name
	Description
	Protocols adopted by DefinedClass
	Methods
	Phase: Using

	DefinedObject
	Name
	Description
	Protocols adopted by DefinedObject
	Methods
	Phase: Using

	Drop
	Name
	Description
	Protocols adopted by Drop
	Methods
	Phase: Using

	Error
	Name
	Description
	Protocols adopted by Error
	Methods
	Macros
	Globals

	EventType
	Name
	Description
	Protocols adopted by EventType
	Methods
	Phase: Using

	Macros

	FArguments
	Name
	Description
	Protocols adopted by FArguments
	Methods
	Phase: Creating
	Phase: Using

	FCall
	Name
	Description
	Protocols adopted by FCall
	Methods
	Phase: Creating
	Phase: Using

	GetName
	Name
	Description
	Protocols adopted by GetName
	Methods
	Phase: Using

	GetOwner
	Name
	Description
	Protocols adopted by GetOwner
	Methods
	Phase: Using

	HDF5
	Name
	Description
	Protocols adopted by HDF5
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	HDF5Archiver
	Name
	Description
	Protocols adopted by HDF5Archiver
	Methods
	Phase: Creating

	HDF5CompoundType
	Name
	Description
	Protocols adopted by HDF5CompoundType
	Methods
	Phase: Creating
	Phase: Using

	LispArchiver
	Name
	Description
	Protocols adopted by LispArchiver
	Methods
	Phase: Creating

	RETURNABLE
	Name
	Description
	Protocols adopted by RETURNABLE
	Methods

	Serialization
	Name
	Description
	Protocols adopted by Serialization
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	SetInitialValue
	Name
	Description
	Protocols adopted by SetInitialValue
	Methods
	Phase: Creating

	Symbol
	Name
	Description
	Protocols adopted by Symbol
	Methods
	Phase: Creating

	Macros

	Warning
	Name
	Description
	Protocols adopted by Warning
	Methods
	Phase: Using

	Macros
	Globals

	Zone
	Name
	Description
	Protocols adopted by Zone
	Methods
	Phase: Creating
	Phase: Using

	General
	Name
	Description
	Macros
	Functions
	Typedefs
	Globals

	1. Dependencies
	2. Compatibility
	3. Usage Guide
	4. Advanced Usage Guide
	5. Subclassing Reference
	6. Interface Design Notes
	7. Implementation Notes
	
	Revision History

	ArchiverArray
	Name
	Description
	Protocols adopted by ArchiverArray
	Methods
	Phase: Creating
	Phase: Using

	ArchiverKeyword
	Name
	Description
	Protocols adopted by ArchiverKeyword
	Methods
	Phase: Creating
	Phase: Using

	ArchiverList
	Name
	Description
	Protocols adopted by ArchiverList
	Methods
	Phase: Using

	ArchiverPair
	Name
	Description
	Protocols adopted by ArchiverPair
	Methods
	Phase: Creating
	Phase: Using

	ArchiverQuoted
	Name
	Description
	Protocols adopted by ArchiverQuoted
	Methods
	Phase: Creating
	Phase: Using

	ArchiverValue
	Name
	Description
	Protocols adopted by ArchiverValue
	Methods
	Phase: Creating
	Phase: Using

	Array
	Name
	Description
	Protocols adopted by Array
	Methods
	Phase: Creating
	Phase: Setting

	Collection
	Name
	Description
	Protocols adopted by Collection
	Methods
	Phase: Creating
	Phase: Using

	CompareFunction
	Name
	Description
	Protocols adopted by CompareFunction
	Methods
	Phase: Creating
	Phase: Using

	Typedefs

	DefaultMember
	Name
	Description
	Protocols adopted by DefaultMember
	Methods
	Phase: Setting
	Phase: Using

	ForEach
	Name
	Description
	Protocols adopted by ForEach
	Methods
	Phase: Using

	ForEachKey
	Name
	Description
	Protocols adopted by ForEachKey
	Methods
	Phase: Using

	Index
	Name
	Description
	Protocols adopted by Index
	Methods
	Phase: Using

	Macros
	Globals

	InputStream
	Name
	Description
	Protocols adopted by InputStream
	Methods
	Phase: Creating
	Phase: Using

	KeyedCollection
	Name
	Description
	Protocols adopted by KeyedCollection
	Methods
	Phase: Using

	KeyedCollectionIndex
	Name
	Description
	Protocols adopted by KeyedCollectionIndex
	Methods

	List
	Name
	Description
	Protocols adopted by List
	Methods
	Phase: Using

	ListIndex
	Name
	Description
	Protocols adopted by ListIndex
	Methods
	Phase: Using

	ListShuffler
	Name
	Description
	Protocols adopted by ListShuffler
	Methods
	Phase: Creating
	Phase: Using

	Map
	Name
	Description
	Protocols adopted by Map
	Methods
	Phase: Using

	MapIndex
	Name
	Description
	Protocols adopted by MapIndex
	Methods
	Phase: Using

	MemberBlock
	Name
	Description
	Protocols adopted by MemberBlock
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	MemberSlot
	Name
	Description
	Protocols adopted by MemberSlot
	Methods
	Typedefs

	Offsets
	Name
	Description
	Protocols adopted by Offsets
	Methods
	Phase: Using

	OrderedSet
	Name
	Description
	Protocols adopted by OrderedSet
	Methods

	OutputStream
	Name
	Description
	Protocols adopted by OutputStream
	Methods
	Phase: Creating
	Phase: Using

	Permutation
	Name
	Description
	Protocols adopted by Permutation
	Methods
	Phase: Creating

	PermutationItem
	Name
	Description
	Protocols adopted by PermutationItem
	Methods
	Phase: Creating
	Phase: Using

	PermutedIndex
	Name
	Description
	Protocols adopted by PermutedIndex
	Methods
	Phase: Creating
	Phase: Using

	Set
	Name
	Description
	Protocols adopted by Set
	Methods
	Phase: Using

	String
	Name
	Description
	Protocols adopted by String
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	General
	Name
	Description
	Macros
	Functions
	Globals

	1. Dependencies
	2. Compatibility
	3. Usage Guide
	3.1. Role of the activity library in Swarm
	3.2. Activity library components
	3.3. Action plan components
	3.4. Model execution component

	4. Advanced Usage Guide
	5. Subclassing Reference
	6. Interface Design Notes
	7. Implementation Notes
	
	Revision History

	Action
	Name
	Description
	Protocols adopted by Action
	Methods
	Phase: Using

	ActionArgs
	Name
	Description
	Protocols adopted by ActionArgs
	Methods
	Phase: Creating
	Phase: Using

	ActionCall
	Name
	Description
	Protocols adopted by ActionCall
	Methods
	Phase: Creating
	Phase: Using

	ActionChanged
	Name
	Description
	Protocols adopted by ActionChanged
	Methods

	ActionConcurrent
	Name
	Description
	Protocols adopted by ActionConcurrent
	Methods
	Phase: Using

	ActionCreating
	Name
	Description
	Protocols adopted by ActionCreating
	Methods
	Phase: Using

	ActionCreatingCall
	Name
	Description
	Protocols adopted by ActionCreatingCall
	Methods
	Phase: Using

	ActionCreatingForEach
	Name
	Description
	Protocols adopted by ActionCreatingForEach
	Methods
	Phase: Using

	ActionCreatingTo
	Name
	Description
	Protocols adopted by ActionCreatingTo
	Methods
	Phase: Using

	Examples

	ActionForEach
	Name
	Description
	Protocols adopted by ActionForEach
	Methods

	ActionForEachHomogeneous
	Name
	Description
	Protocols adopted by ActionForEachHomogeneous
	Methods

	ActionGroup
	Name
	Description
	Protocols adopted by ActionGroup
	Methods

	ActionSelector
	Name
	Description
	Protocols adopted by ActionSelector
	Methods
	Phase: Setting
	Phase: Using

	ActionTarget
	Name
	Description
	Protocols adopted by ActionTarget
	Methods
	Phase: Creating
	Phase: Using

	ActionTo
	Name
	Description
	Protocols adopted by ActionTo
	Methods

	ActionType
	Name
	Description
	Protocols adopted by ActionType
	Methods
	Phase: Using

	ActivationOrder
	Name
	Description
	Protocols adopted by ActivationOrder
	Methods
	Phase: Using

	Activity
	Name
	Description
	Protocols adopted by Activity
	Methods
	Phase: Using

	ActivityIndex
	Name
	Description
	Protocols adopted by ActivityIndex
	Methods
	Phase: Using

	AutoDrop
	Name
	Description
	Protocols adopted by AutoDrop
	Methods
	Phase: Creating
	Phase: Using

	CompoundAction
	Name
	Description
	Protocols adopted by CompoundAction
	Methods

	ConcurrentGroup
	Name
	Description
	Protocols adopted by ConcurrentGroup
	Methods
	Phase: Using

	ConcurrentGroupType
	Name
	Description
	Protocols adopted by ConcurrentGroupType
	Methods
	Phase: Setting
	Phase: Using

	ConcurrentSchedule
	Name
	Description
	Protocols adopted by ConcurrentSchedule
	Methods

	DefaultOrder
	Name
	Description
	Protocols adopted by DefaultOrder
	Methods
	Phase: Setting
	Phase: Using

	FAction
	Name
	Description
	Protocols adopted by FAction
	Methods
	Phase: Creating
	Phase: Setting

	FActionCreating
	Name
	Description
	Protocols adopted by FActionCreating
	Methods
	Phase: Using

	FActionCreatingForEachHeterogeneous
	Name
	Description
	Protocols adopted by FActionCreatingForEachHeterogeneous
	Methods
	Phase: Using

	FActionCreatingForEachHomogeneous
	Name
	Description
	Protocols adopted by FActionCreatingForEachHomogeneous
	Methods
	Phase: Using

	FActionForEach
	Name
	Description
	Protocols adopted by FActionForEach
	Methods

	FActionForEachHeterogeneous
	Name
	Description
	Protocols adopted by FActionForEachHeterogeneous
	Methods

	FActionForEachHomogeneous
	Name
	Description
	Protocols adopted by FActionForEachHomogeneous
	Methods

	ForEachActivity
	Name
	Description
	Protocols adopted by ForEachActivity
	Methods
	Phase: Using

	GetSubactivityAction
	Name
	Description
	Protocols adopted by GetSubactivityAction
	Methods
	Phase: Using

	RelativeTime
	Name
	Description
	Protocols adopted by RelativeTime
	Methods
	Phase: Setting
	Phase: Using

	RepeatInterval
	Name
	Description
	Protocols adopted by RepeatInterval
	Methods
	Phase: Setting
	Phase: Using

	Schedule
	Name
	Description
	Protocols adopted by Schedule
	Methods
	Phase: Creating
	Phase: Using

	ScheduleActivity
	Name
	Description
	Protocols adopted by ScheduleActivity
	Methods
	Phase: Using

	SingletonGroups
	Name
	Description
	Protocols adopted by SingletonGroups
	Methods
	Phase: Setting
	Phase: Using

	SwarmActivity
	Name
	Description
	Protocols adopted by SwarmActivity
	Methods
	Phase: Using

	SwarmProcess
	Name
	Description
	Protocols adopted by SwarmProcess
	Methods
	Phase: Creating
	Phase: Using

	SynchronizationType
	Name
	Description
	Protocols adopted by SynchronizationType
	Methods
	Phase: Creating
	Phase: Using

	General
	Name
	Description
	Macros
	Functions
	Typedefs
	Globals

	1. Dependencies
	2. Compatibility
	3. Usage Guide
	3.1. Overview
	3.2. Example Usage of SwarmObject
	3.3. Subclassing from Swarm
	3.4. ActivityControl

	4. Advanced Usage Guide
	4.1. ProbeMap design
	4.2. ActivityControl Issues

	5. Subclassing Reference
	6. Interface Design Notes
	7. Implementation Notes
	
	Revision History

	ActivityControl
	Name
	Description
	Protocols adopted by ActivityControl
	Methods
	Phase: Using

	CompleteProbeMap
	Name
	Description
	Protocols adopted by CompleteProbeMap
	Methods

	CompleteVarMap
	Name
	Description
	Protocols adopted by CompleteVarMap
	Methods

	CustomProbeMap
	Name
	Description
	Protocols adopted by CustomProbeMap
	Methods
	Phase: Creating
	Phase: Setting

	DefaultProbeMap
	Name
	Description
	Protocols adopted by DefaultProbeMap
	Methods

	EmptyProbeMap
	Name
	Description
	Protocols adopted by EmptyProbeMap
	Methods
	Phase: Creating

	MessageProbe
	Name
	Description
	Protocols adopted by MessageProbe
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	Probe
	Name
	Description
	Protocols adopted by Probe
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	ProbeConfig
	Name
	Description
	Protocols adopted by ProbeConfig
	Methods
	Phase: Using

	ProbeLibrary
	Name
	Description
	Protocols adopted by ProbeLibrary
	Methods
	Phase: Using

	ProbeMap
	Name
	Description
	Protocols adopted by ProbeMap
	Methods
	Phase: Creating
	Phase: Using

	Swarm
	Name
	Description
	Protocols adopted by Swarm
	Methods
	Phase: Using

	SwarmObject
	Name
	Description
	Protocols adopted by SwarmObject
	Methods
	Phase: Using

	VarProbe
	Name
	Description
	Protocols adopted by VarProbe
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	Globals

	General
	Name
	Description
	Globals

	1. Dependencies
	2. Compatibility
	3. Usage Guide
	3.1. Overview
	3.2. Usage Guide for Beginners, Advanced Usage Guide and Guide to Generators and Distributions

	4. Subclassing Reference
	5. Implementation Notes
	5.1. General Implementation Notes
	5.2. Implementation notes for Generators
	5.3. Implementation notes for Distributions
	5.4. Programming yet to do
	Revision History

	ACGgen
	Name
	Description
	Protocols adopted by ACGgen
	Methods

	BasicRandomGenerator
	Name
	Description
	Protocols adopted by BasicRandomGenerator
	Methods

	BernoulliDist
	Name
	Description
	Protocols adopted by BernoulliDist
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	BinomialDist
	Name
	Description
	Protocols adopted by BinomialDist
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	BooleanDistribution
	Name
	Description
	Protocols adopted by BooleanDistribution
	Methods
	Phase: Using

	C2LCGXgen
	Name
	Description
	Protocols adopted by C2LCGXgen
	Methods

	C2MRG3gen
	Name
	Description
	Protocols adopted by C2MRG3gen
	Methods

	C2TAUS1gen
	Name
	Description
	Protocols adopted by C2TAUS1gen
	Methods

	C2TAUS2gen
	Name
	Description
	Protocols adopted by C2TAUS2gen
	Methods

	C2TAUS3gen
	Name
	Description
	Protocols adopted by C2TAUS3gen
	Methods

	C2TAUSgen
	Name
	Description
	Protocols adopted by C2TAUSgen
	Methods

	C3MWCgen
	Name
	Description
	Protocols adopted by C3MWCgen
	Methods

	C4LCGXgen
	Name
	Description
	Protocols adopted by C4LCGXgen
	Methods

	CommonGenerator
	Name
	Protocols adopted by CommonGenerator
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	DoubleDistribution
	Name
	Description
	Protocols adopted by DoubleDistribution
	Methods
	Phase: Using

	ExponentialDist
	Name
	Description
	Protocols adopted by ExponentialDist
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	GammaDist
	Name
	Description
	Protocols adopted by GammaDist
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	IntegerDistribution
	Name
	Description
	Protocols adopted by IntegerDistribution
	Methods
	Phase: Using

	InternalState
	Name
	Description
	Protocols adopted by InternalState
	Methods
	Phase: Using

	LCG1gen
	Name
	Description
	Protocols adopted by LCG1gen
	Methods

	LCG2gen
	Name
	Description
	Protocols adopted by LCG2gen
	Methods

	LCG3gen
	Name
	Description
	Protocols adopted by LCG3gen
	Methods

	LCGgen
	Name
	Description
	Protocols adopted by LCGgen
	Methods

	LogNormalDist
	Name
	Description
	Protocols adopted by LogNormalDist
	Methods

	MRG5gen
	Name
	Description
	Protocols adopted by MRG5gen
	Methods

	MRG6gen
	Name
	Description
	Protocols adopted by MRG6gen
	Methods

	MRG7gen
	Name
	Description
	Protocols adopted by MRG7gen
	Methods

	MRGgen
	Name
	Description
	Protocols adopted by MRGgen
	Methods

	MT19937gen
	Name
	Description
	Protocols adopted by MT19937gen
	Methods

	MWCAgen
	Name
	Description
	Protocols adopted by MWCAgen
	Methods

	MWCBgen
	Name
	Description
	Protocols adopted by MWCBgen
	Methods

	Normal
	Name
	Protocols adopted by Normal
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	NormalDist
	Name
	Description
	Protocols adopted by NormalDist
	Methods

	PMMLCG1gen
	Name
	Description
	Protocols adopted by PMMLCG1gen
	Methods

	PMMLCG2gen
	Name
	Description
	Protocols adopted by PMMLCG2gen
	Methods

	PMMLCG3gen
	Name
	Description
	Protocols adopted by PMMLCG3gen
	Methods

	PMMLCG4gen
	Name
	Description
	Protocols adopted by PMMLCG4gen
	Methods

	PMMLCG5gen
	Name
	Description
	Protocols adopted by PMMLCG5gen
	Methods

	PMMLCG6gen
	Name
	Description
	Protocols adopted by PMMLCG6gen
	Methods

	PMMLCG7gen
	Name
	Description
	Protocols adopted by PMMLCG7gen
	Methods

	PMMLCG8gen
	Name
	Description
	Protocols adopted by PMMLCG8gen
	Methods

	PMMLCG9gen
	Name
	Description
	Protocols adopted by PMMLCG9gen
	Methods

	PMMLCGgen
	Name
	Description
	Protocols adopted by PMMLCGgen
	Methods

	PSWBgen
	Name
	Description
	Protocols adopted by PSWBgen
	Methods

	PoissonDist
	Name
	Description
	Protocols adopted by PoissonDist
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	ProbabilityDistribution
	Name
	Description
	Protocols adopted by ProbabilityDistribution
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	RWC2gen
	Name
	Description
	Protocols adopted by RWC2gen
	Methods

	RWC8gen
	Name
	Description
	Protocols adopted by RWC8gen
	Methods

	RandomBitDist
	Name
	Description
	Protocols adopted by RandomBitDist
	Methods
	Phase: Using

	SCGgen
	Name
	Description
	Protocols adopted by SCGgen
	Methods

	SWB1gen
	Name
	Description
	Protocols adopted by SWB1gen
	Methods

	SWB2gen
	Name
	Description
	Protocols adopted by SWB2gen
	Methods

	SWB3gen
	Name
	Description
	Protocols adopted by SWB3gen
	Methods

	SWBgen
	Name
	Description
	Protocols adopted by SWBgen
	Methods

	SimpleGenerator
	Name
	Protocols adopted by SimpleGenerator
	Methods
	Phase: Creating
	Phase: Using

	SimpleRandomGenerator
	Name
	Description
	Protocols adopted by SimpleRandomGenerator
	Methods

	SplitGenerator
	Name
	Protocols adopted by SplitGenerator
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	SplitRandomGenerator
	Name
	Description
	Protocols adopted by SplitRandomGenerator
	Methods

	TGFSRgen
	Name
	Description
	Protocols adopted by TGFSRgen
	Methods

	TT403gen
	Name
	Description
	Protocols adopted by TT403gen
	Methods

	TT775gen
	Name
	Description
	Protocols adopted by TT775gen
	Methods

	TT800gen
	Name
	Description
	Protocols adopted by TT800gen
	Methods

	UniformDoubleDist
	Name
	Description
	Protocols adopted by UniformDoubleDist
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	UniformIntegerDist
	Name
	Description
	Protocols adopted by UniformIntegerDist
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	UniformUnsignedDist
	Name
	Description
	Protocols adopted by UniformUnsignedDist
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	UnsignedDistribution
	Name
	Description
	Protocols adopted by UnsignedDistribution
	Methods
	Phase: Using

	General
	Name
	Description

	1. Dependencies
	2. Compatibility
	
	Revision History

	AppendFile [Deprecated]
	Name
	Description
	Protocols adopted by AppendFile
	Methods
	Phase: Creating

	InFile [Deprecated]
	Name
	Description
	Protocols adopted by InFile
	Methods
	Phase: Creating
	Phase: Using

	NSelect
	Name
	Description
	Protocols adopted by NSelect
	Methods
	Phase: Using

	ObjectLoader [Deprecated]
	Name
	Description
	Protocols adopted by ObjectLoader
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	ObjectSaver [Deprecated]
	Name
	Description
	Protocols adopted by ObjectSaver
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	OutFile [Deprecated]
	Name
	Description
	Protocols adopted by OutFile
	Methods
	Phase: Creating
	Phase: Using

	QSort
	Name
	Description
	Protocols adopted by QSort
	Methods
	Phase: Using

	UName
	Name
	Description
	Protocols adopted by UName
	Methods
	Phase: Creating
	Phase: Using

	General
	Name
	Description
	Macros
	Functions

	1. Dependencies
	2. Compatibility
	
	Revision History

	ActionCache
	Name
	Description
	Protocols adopted by ActionCache
	Methods
	Phase: Creating
	Phase: Using

	CommonProbeDisplay
	Name
	Description
	Protocols adopted by CommonProbeDisplay
	Methods
	Phase: Using

	CompleteProbeDisplay
	Name
	Description
	Protocols adopted by CompleteProbeDisplay
	Methods

	CompositeWindowGeometryRecordName
	Name
	Description
	Protocols adopted by CompositeWindowGeometryRecordName
	Methods
	Phase: Creating

	Macros

	ControlPanel
	Name
	Description
	Protocols adopted by ControlPanel
	Methods
	Phase: Using

	GUIComposite
	Name
	Description
	Protocols adopted by GUIComposite
	Methods
	Phase: Using

	GUISwarm
	Name
	Description
	Protocols adopted by GUISwarm
	Methods
	Phase: Using

	MessageProbeWidget
	Name
	Description
	Protocols adopted by MessageProbeWidget
	Methods
	Phase: Creating
	Phase: Using

	MultiVarProbeDisplay
	Name
	Description
	Protocols adopted by MultiVarProbeDisplay
	Methods
	Phase: Creating

	MultiVarProbeWidget
	Name
	Description
	Protocols adopted by MultiVarProbeWidget
	Methods
	Phase: Creating
	Phase: Using

	ProbeDisplay
	Name
	Description
	Protocols adopted by ProbeDisplay
	Methods
	Phase: Creating

	ProbeDisplayManager
	Name
	Description
	Protocols adopted by ProbeDisplayManager
	Methods
	Phase: Using

	Macros

	SimpleProbeDisplay
	Name
	Description
	Protocols adopted by SimpleProbeDisplay
	Methods
	Phase: Creating

	SingleProbeDisplay
	Name
	Description
	Protocols adopted by SingleProbeDisplay
	Methods
	Phase: Creating
	Phase: Using

	WindowGeometryRecordName
	Name
	Description
	Protocols adopted by WindowGeometryRecordName
	Methods
	Phase: Creating

	Macros

	General
	Name
	Functions
	Globals

	1. Dependencies
	2. Compatibility
	
	Revision History

	ArchivedGeometryWidget
	Name
	Description
	Protocols adopted by ArchivedGeometryWidget
	Methods
	Phase: Creating
	Phase: Using

	Button
	Name
	Description
	Protocols adopted by Button
	Methods
	Phase: Using

	ButtonPanel
	Name
	Description
	Protocols adopted by ButtonPanel
	Methods
	Phase: Using

	Canvas
	Name
	Description
	Protocols adopted by Canvas
	Methods
	Phase: Using

	CanvasAbstractItem
	Name
	Description
	Protocols adopted by CanvasAbstractItem
	Methods
	Phase: Creating
	Phase: Using

	CanvasItem
	Name
	Description
	Protocols adopted by CanvasItem
	Methods

	CheckButton
	Name
	Description
	Protocols adopted by CheckButton
	Methods
	Phase: Using

	Circle
	Name
	Description
	Protocols adopted by Circle
	Methods
	Phase: Creating

	ClassDisplayHideButton
	Name
	Description
	Protocols adopted by ClassDisplayHideButton
	Methods
	Phase: Creating

	ClassDisplayLabel
	Name
	Description
	Protocols adopted by ClassDisplayLabel
	Methods

	Colormap
	Name
	Description
	Protocols adopted by Colormap
	Methods
	Phase: Using

	CompleteProbeDisplayLabel
	Name
	Description
	Protocols adopted by CompleteProbeDisplayLabel
	Methods
	Phase: Creating

	CompositeItem
	Name
	Description
	Protocols adopted by CompositeItem
	Methods
	Phase: Using

	Drawer
	Name
	Description
	Protocols adopted by Drawer
	Methods
	Phase: Using

	Entry
	Name
	Description
	Protocols adopted by Entry
	Methods
	Phase: Using

	Form
	Name
	Description
	Protocols adopted by Form
	Methods
	Phase: Using

	Frame
	Name
	Description
	Protocols adopted by Frame
	Methods
	Phase: Creating
	Phase: Using

	Graph
	Name
	Description
	Protocols adopted by Graph
	Methods
	Phase: Using

	GraphElement
	Name
	Description
	Protocols adopted by GraphElement
	Methods
	Phase: Creating
	Phase: Using

	Histogram
	Name
	Description
	Protocols adopted by Histogram
	Methods
	Phase: Creating
	Phase: Using

	InputWidget
	Name
	Description
	Protocols adopted by InputWidget
	Methods
	Phase: Using

	Label
	Name
	Description
	Protocols adopted by Label
	Methods
	Phase: Using

	Line
	Name
	Description
	Protocols adopted by Line
	Methods
	Phase: Creating

	LinkItem
	Name
	Description
	Protocols adopted by LinkItem
	Methods
	Phase: Creating
	Phase: Using

	MessageProbeEntry
	Name
	Description
	Protocols adopted by MessageProbeEntry
	Methods
	Phase: Creating

	NodeItem
	Name
	Description
	Protocols adopted by NodeItem
	Methods
	Phase: Creating
	Phase: Using

	OvalNodeItem
	Name
	Description
	Protocols adopted by OvalNodeItem
	Methods

	Pixmap
	Name
	Description
	Protocols adopted by Pixmap
	Methods
	Phase: Creating
	Phase: Using

	ProbeCanvas
	Name
	Description
	Protocols adopted by ProbeCanvas
	Methods
	Phase: Creating

	Raster
	Name
	Description
	Protocols adopted by Raster
	Methods
	Phase: Using

	Rectangle
	Name
	Description
	Protocols adopted by Rectangle
	Methods
	Phase: Creating

	RectangleNodeItem
	Name
	Description
	Protocols adopted by RectangleNodeItem
	Methods

	ScheduleItem
	Name
	Description
	Protocols adopted by ScheduleItem
	Methods
	Phase: Creating
	Phase: Using

	SimpleProbeDisplayHideButton
	Name
	Description
	Protocols adopted by SimpleProbeDisplayHideButton
	Methods
	Phase: Creating

	SuperButton
	Name
	Description
	Protocols adopted by SuperButton
	Methods
	Phase: Creating

	TextItem
	Name
	Description
	Protocols adopted by TextItem
	Methods
	Phase: Creating

	VarProbeEntry
	Name
	Description
	Protocols adopted by VarProbeEntry
	Methods
	Phase: Creating
	Phase: Using

	VarProbeLabel
	Name
	Description
	Protocols adopted by VarProbeLabel
	Methods

	Widget
	Name
	Description
	Protocols adopted by Widget
	Methods
	Phase: Creating
	Phase: Using

	WindowGeometryRecord
	Name
	Description
	Protocols adopted by WindowGeometryRecord
	Methods
	Phase: Using

	ZoomRaster
	Name
	Description
	Protocols adopted by ZoomRaster
	Methods
	Phase: Using

	General
	Name
	Description
	Macros
	Functions
	Typedefs

	1. Dependencies
	2. Compatibility
	
	Revision History

	ActiveGraph
	Name
	Description
	Protocols adopted by ActiveGraph
	Methods
	Phase: Creating
	Phase: Using

	ActiveOutFile
	Name
	Description
	Protocols adopted by ActiveOutFile
	Methods
	Phase: Creating
	Phase: Using

	Averager
	Name
	Description
	Protocols adopted by Averager
	Methods
	Phase: Creating
	Phase: Using

	EZAverageSequence
	Name
	Description
	Protocols adopted by EZAverageSequence
	Methods
	Phase: Using

	EZBin
	Name
	Description
	Protocols adopted by EZBin
	Methods
	Phase: Creating
	Phase: Using

	EZDistribution
	Name
	Description
	Protocols adopted by EZDistribution
	Methods
	Phase: Using

	EZGraph
	Name
	Description
	Protocols adopted by EZGraph
	Methods
	Phase: Creating
	Phase: Using

	EZSequence
	Name
	Description
	Protocols adopted by EZSequence
	Methods
	Phase: Using

	Entropy
	Name
	Description
	Protocols adopted by Entropy
	Methods
	Phase: Creating
	Phase: Using

	FunctionGraph
	Name
	Description
	Protocols adopted by FunctionGraph
	Methods
	Phase: Creating
	Phase: Using

	General
	Name
	Description

	1. Dependencies
	2. Compatibility
	
	Revision History

	Ca2d
	Name
	Description
	Protocols adopted by Ca2d
	Methods
	Phase: Creating
	Phase: Using

	ConwayLife2d
	Name
	Description
	Protocols adopted by ConwayLife2d
	Methods
	Phase: Creating
	Phase: Using

	DblBuffer2d
	Name
	Description
	Protocols adopted by DblBuffer2d
	Methods
	Phase: Using

	Diffuse2d
	Name
	Description
	Protocols adopted by Diffuse2d
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	Discrete2d
	Name
	Description
	Protocols adopted by Discrete2d
	Methods
	Phase: Creating
	Phase: Setting
	Phase: Using

	Examples

	Grid2d
	Name
	Description
	Protocols adopted by Grid2d
	Methods
	Phase: Using

	GridData
	Name
	Description
	Protocols adopted by GridData
	Methods
	Phase: Using

	Int2dFiler
	Name
	Description
	Protocols adopted by Int2dFiler
	Methods
	Phase: Using

	Object2dDisplay
	Name
	Description
	Protocols adopted by Object2dDisplay
	Methods
	Phase: Creating
	Phase: Using

	Value2dDisplay
	Name
	Description
	Protocols adopted by Value2dDisplay
	Methods
	Phase: Creating
	Phase: Using

	General
	Name
	Description

	SwarmEnvironment
	Name
	Description
	Protocols adopted by SwarmEnvironment
	Methods
	Phase: Creating
	Phase: Using

	General
	Name
	Description
	Functions
	Globals

	Appendix A. GridTurtle Test Programs
	A.1. Overview
	A.2. Summary of files
	A.2.1. Main programs
	A.2.2. Support files

	Appendix B. Library Interface Conventions
	B.1. Overview
	B.2. Library Header File
	B.3. Object Type Definitions
	B.4. GridTurtle example
	B.5. Global Object Symbols
	B.6. Interface Design Convention
	B.7. Documentation Structure

	Appendix C. Licenses for Distribution of Swarm and Applications
	Protocol Index
	Method Index
	Function Index
	Global Index
	Macro Index
	Typedef Index

