
Crude Synchronization-Efficiency Queueing Model

Paul E. McKenney
Linux Technology Center

IBM Beaverton
paulmck@linux.vnet.ibm.com

ABSTRACT
Many people are still in the habit of thinking of individ-
ual machine instructions as having constant computational
complexity. In fact, modern systems have decidely non-
constant computational complexity for the atomic instruc-
tions that are commonly used to implement synchronization
primitives. This paper presents a very crude (but effective)
queueing model demonstrating how the varying overhead of
atomic instructions can influence the performance of shared-
memory parallel programs.

1. INTRODUCTION
The non-constant nature of atomic instructions on mod-

ern CPUs can be seen in Figure 1, which plots the time
in nanoseconds to execute an atomic increment of a single
global variable on a system containing recent x86 CPUs. As
can be seen, the latency of an atomic-increment instruction
is roughly 25 nanoseconds times the number of CPUs. This
figure unmistakeably shows that we cannot take for granted
that conventional global synchronization mechanisms based
on atomic instructions will perform or scale well with in-
creasing numbers of CPUs.

Instead, we need to carefully consider the synchronization
efficiency of our designs. To this end, this paper derives a
crude queueing model that approximates the synchroniza-
tion efficiency of synchronization mechanisms that operate
on a single global shared variable.

2. DERIVATION
This section derives a crude queueing model for the ef-

ficiency of synchronization mechanism that operate on a
single shared global variable, based on an M/M/1 queue.
M/M/1 queuing models are based on an exponentially dis-
tributed “inter-arrival rate” λ and an exponentially distributed
“service rate” µ. The inter-arrival rate λ can be thought
of as the average number of synchronization operations per
second that the system would process if the synchronization
were free, in other words, λ is an inverse measure of the over-
head of each non-synchronization unit of work. For example,
if each unit of work was a transaction, if each transaction
took one millisecond to process, not counting synchroniza-
tion overhead, then λ would be 1,000 transactions per sec-
ond.

The service rate µ is defined similarly, but for the aver-
age number of synchronization operations per second that
the system would process if the overhead of each transac-
tion was zero, and ignoring the fact that CPUs must wait

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16

T
im

e
P

er
 In

cr
em

en
t (

ns
)

Number of CPUs/Threads

Figure 1: Atomic-Increment Overhead as Function
of CPUs/Threads

on each other to complete their increment operations. Our
example system from Figure 1 consumed about 25 nanosec-
onds per atomic increment. The value of µ is therefore about
40,000,000 atomic increments per second.

Of course, the value of λ increases with increasing num-
bers of CPUs, as each CPU is capable of processing trans-
actions independently (again, ignoring synchronization):

λ = nλ0 (1)

where n is the number of CPUs and λ0 is the transaction-
processing capability of a single CPU. Note that the ex-
pected time for a single CPU to execute a single transaction
is 1/λ0.

Because the CPUs have to “wait in line” behind each other
to get their chance to increment the single shared variable,
we can use the M/M/1 queueing-model expression for the
expected total waiting time:

T =
1

µ − λ
(2)

Substituting the above value of λ:

T =
1

µ − nλ0

(3)

Now, the efficiency is just the ratio of the time required
to process a transaction in absence of synchronization to the
time required including synchronization:

e =
1/λ0

T + 1/λ0

(4)

Substituting the above value for T and simplifying:

e =

µ

λ0
− n

µ

λ0
− (n − 1)

(5)

But the value of µ/λ0 is just the ratio of the time re-
quired to process the transaction (absent synchronization
overhead) to that of the synchronization overhead itself. If
we call this ration f , we have:

e =
f − n

f − (n − 1)
(6)

Figure 2 plots the synchronization efficiency e as a func-
tion of the number of CPUs/threads n for a few values of
the overhead ratio f . As can be seen from this plot, syn-
chronization mechanisms based on atomic manipulation of
a single global shared variable cannot be expected to scale
well on current commodity hardware.

3. CONCLUSIONS
Given current commodity hardware, developers should

use synchronization mechanisms based on atomic manipula-
tion of multiple global shared variables rather than on a sin-
gle global shared variable. A common Linux-community slo-
gan that corresponds to this advice is “lock data, not code”,
so that the number of atomically manipulated variables rises
with the load on the system, avoiding queuing. Alterna-
tively, lighter-weight synchronization mechanisms should be
used where they apply.

Legal Statement
This work represents the views of the author and does not necessarily

represent the view of IBM.

Linux is a copyright of Linus Torvalds.

Other company, product, and service names may be trademarks or

service marks of others.

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

S
yn

ch
ro

ni
za

tio
n

E
ffi

ci
en

cy

Number of CPUs/Threads

10
25

50
75

100

Figure 2: Synchronization Efficiency

